Abstract
Improving low-light images is vital for fields like surveillance and medical imaging, where sharp and clear visuals are critical for accurate analysis. The primary challenge is the limited availability of high-quality data and the difficulty in enhancing image details without introducing errors. To address this challenge, we propose improving low-light enhancement through day-to-night domain adaptation. This approach aims to aid low-light scene enhancement by recovering well-lit scenes after degradation, eliminating the need for real low-light data. High-Quality Priors (HQPs) are introduced through discrete codebooks using a pre-trained VQGAN, Retinex-based reflectance decomposition, FFT-based feature transformation, and a bionic signal amplification mechanism. A comprehensive loss function ensures high-quality enhancement. Experimental results demonstrate that this method excels in noise reduction, detail preservation, and overall visual quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aghajanzadeh, S., Forsyth, D.: Long scale error control in low light image and video enhancement using equivariance (2022)
Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR (2011)
Cai, Y., Bian, H., Lin, J., Wang, H., Timofte, R., Zhang, Y.: Retinexformer: one-stage retinex-based transformer for low-light image enhancement. In: ICCV (2023)
Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. IEEE Conf. Comput. Vis. Pattern Recog. 3291–3300 (2018)
Du, Z., Shi, M., Deng, J.: Boosting object detection with zero-shot day-night domain adaptation. arXiv preprint arXiv:2312.01220 (2023)
Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. arXiv preprint arXiv:2012.09841 (2020)
Fu, Z., Yang, Y., Tu, X., Huang, Y., Ding, X., Ma, K.: Learning a simple low-light image enhancer from paired low-light instances. In: CVPR (2023)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Guo, C.G., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1780–1789 (2020)
Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)
Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE TIP 30, 2340–2349 (2021)
Jin, Y., Yang, W., Tan, R.T.: Unsupervised night image enhancement: when layer decomposition meets light-effects suppression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXXVII, pp. 404–421. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_23
Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)
Land, E.H., McCann, J.J.: Lightness and retinex theory. JOSA 61(1), 1–11 (1971)
Li, C., Guo, C., Loy, C.C.: Learning to enhance low-light image via zero-reference deep curve estimation. IEEE TPAMI 44(8), 4225–4238 (2021)
Liang, Z., Li, C., Zhou, S., Feng, R., Loy, C.C.: Iterative prompt learning for unsupervised backlit image enhancement. In: ICCV (2023)
Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In: CVPR (2021)
Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: CVPR (2022)
van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning (2018)
Jobson, D.J.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100 (2004). https://doi.org/10.1117/1.1636183
Sun, S., Ren, W., Peng, J., Song, F., Cao, X.: Di-retinex: digital-imaging retinex theory for low-light image enhancement (2024)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, C., Wu, H., Jin, Z.: Fourllie: boosting low-light image enhancement by Fourier frequency information. arXiv preprint arXiv:2308.03033 (2023)
Wang, W., Yang, H., Fu, J., Liu, J.: Zero-reference low-light enhancement via physical quadruple priors (2024)
Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: BMVC (2018)
Wu, R., Duan, Z., Guo, C., Chai, Z., Li, C.: Ridcp: revitalizing real image dehazing via high-quality codebook priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)
Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: retinex-based deep unfolding network for low-light image enhancement. In: CVPR (2022)
Yang, S., Ding, M., Wu, Y., Li, Z., Zhang, J.: Implicit neural representation for cooperative low-light image enhancement. In: ICCV (2023)
Yang, W., Wang, S., Fang, Y., Wang, Y., Liu, J.: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement. In: CVPR (2020)
Zhang, L., Zhang, L., Liu, X., Shen, Y., Zhang, S., Zhao, S.: Zero-shot restoration of back-lit images using deep internal learning. In: ACM MM (2019)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhang, Y., Guo, X., Ma, J., Liu, W., Zhang, J.: Beyond brightening low-light images. IJCV 129(4), 1013–1037 (2021)
Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: ACM MM (2019)
Zhao, Z., Xiong, B., Wang, L., Ou, Q., Yu, L., Kuang, F.: Retinexdip: a unified deep framework for low-light image enhancement. IEEE Trans. Circuits Syst. Video Technol. 32(3), 1076–1088 (2022). https://doi.org/10.1109/TCSVT.2021.3073371
Zhou, S., Li, C., Change Loy, C.: LEDNet: joint low-light enhancement and deblurring in the dark. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part VI, pp. 573–589. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20068-7_33
Zou, W., et al.: Vqcnir: clearer night image restoration with vector-quantized codebook. arXiv preprint arXiv:2312.08606 (2023)
Acknowledgment
This work was supported by the innovation fund (No.2021YFB3601400). I am deeply grateful to the development team of the SEE series software for providing the essential simulation support that greatly contributed to the completion of this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Li, Z., Yang, H., Yang, S., Tang, X., Xu, F., Chen, Q. (2025). HQPAFT: Enhancing Low-Light Images with High-Quality Priors and Advanced Feature Transformations Using Only Normal Light Images. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15283. Springer, Singapore. https://doi.org/10.1007/978-981-96-0122-6_19
Download citation
DOI: https://doi.org/10.1007/978-981-96-0122-6_19
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0121-9
Online ISBN: 978-981-96-0122-6
eBook Packages: Computer ScienceComputer Science (R0)