Nothing Special   »   [go: up one dir, main page]

Skip to main content

HQPAFT: Enhancing Low-Light Images with High-Quality Priors and Advanced Feature Transformations Using Only Normal Light Images

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15283))

Included in the following conference series:

  • 443 Accesses

Abstract

Improving low-light images is vital for fields like surveillance and medical imaging, where sharp and clear visuals are critical for accurate analysis. The primary challenge is the limited availability of high-quality data and the difficulty in enhancing image details without introducing errors. To address this challenge, we propose improving low-light enhancement through day-to-night domain adaptation. This approach aims to aid low-light scene enhancement by recovering well-lit scenes after degradation, eliminating the need for real low-light data. High-Quality Priors (HQPs) are introduced through discrete codebooks using a pre-trained VQGAN, Retinex-based reflectance decomposition, FFT-based feature transformation, and a bionic signal amplification mechanism. A comprehensive loss function ensures high-quality enhancement. Experimental results demonstrate that this method excels in noise reduction, detail preservation, and overall visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 13.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghajanzadeh, S., Forsyth, D.: Long scale error control in low light image and video enhancement using equivariance (2022)

    Google Scholar 

  2. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR (2011)

    Google Scholar 

  3. Cai, Y., Bian, H., Lin, J., Wang, H., Timofte, R., Zhang, Y.: Retinexformer: one-stage retinex-based transformer for low-light image enhancement. In: ICCV (2023)

    Google Scholar 

  4. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. IEEE Conf. Comput. Vis. Pattern Recog. 3291–3300 (2018)

    Google Scholar 

  5. Du, Z., Shi, M., Deng, J.: Boosting object detection with zero-shot day-night domain adaptation. arXiv preprint arXiv:2312.01220 (2023)

  6. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. arXiv preprint arXiv:2012.09841 (2020)

  7. Fu, Z., Yang, Y., Tu, X., Huang, Y., Ding, X., Ma, K.: Learning a simple low-light image enhancer from paired low-light instances. In: CVPR (2023)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  9. Guo, C.G., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1780–1789 (2020)

    Google Scholar 

  10. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Google Scholar 

  11. Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE TIP 30, 2340–2349 (2021)

    Google Scholar 

  12. Jin, Y., Yang, W., Tan, R.T.: Unsupervised night image enhancement: when layer decomposition meets light-effects suppression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXXVII, pp. 404–421. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_23

  13. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  14. Land, E.H., McCann, J.J.: Lightness and retinex theory. JOSA 61(1), 1–11 (1971)

    Article  Google Scholar 

  15. Li, C., Guo, C., Loy, C.C.: Learning to enhance low-light image via zero-reference deep curve estimation. IEEE TPAMI 44(8), 4225–4238 (2021)

    Google Scholar 

  16. Liang, Z., Li, C., Zhou, S., Feng, R., Loy, C.C.: Iterative prompt learning for unsupervised backlit image enhancement. In: ICCV (2023)

    Google Scholar 

  17. Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In: CVPR (2021)

    Google Scholar 

  18. Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: CVPR (2022)

    Google Scholar 

  19. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning (2018)

    Google Scholar 

  20. Jobson, D.J.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100 (2004). https://doi.org/10.1117/1.1636183

    Article  Google Scholar 

  21. Sun, S., Ren, W., Peng, J., Song, F., Cao, X.: Di-retinex: digital-imaging retinex theory for low-light image enhancement (2024)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  23. Wang, C., Wu, H., Jin, Z.: Fourllie: boosting low-light image enhancement by Fourier frequency information. arXiv preprint arXiv:2308.03033 (2023)

  24. Wang, W., Yang, H., Fu, J., Liu, J.: Zero-reference low-light enhancement via physical quadruple priors (2024)

    Google Scholar 

  25. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: BMVC (2018)

    Google Scholar 

  26. Wu, R., Duan, Z., Guo, C., Chai, Z., Li, C.: Ridcp: revitalizing real image dehazing via high-quality codebook priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)

    Google Scholar 

  27. Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: retinex-based deep unfolding network for low-light image enhancement. In: CVPR (2022)

    Google Scholar 

  28. Yang, S., Ding, M., Wu, Y., Li, Z., Zhang, J.: Implicit neural representation for cooperative low-light image enhancement. In: ICCV (2023)

    Google Scholar 

  29. Yang, W., Wang, S., Fang, Y., Wang, Y., Liu, J.: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement. In: CVPR (2020)

    Google Scholar 

  30. Zhang, L., Zhang, L., Liu, X., Shen, Y., Zhang, S., Zhao, S.: Zero-shot restoration of back-lit images using deep internal learning. In: ACM MM (2019)

    Google Scholar 

  31. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  32. Zhang, Y., Guo, X., Ma, J., Liu, W., Zhang, J.: Beyond brightening low-light images. IJCV 129(4), 1013–1037 (2021)

    Google Scholar 

  33. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: ACM MM (2019)

    Google Scholar 

  34. Zhao, Z., Xiong, B., Wang, L., Ou, Q., Yu, L., Kuang, F.: Retinexdip: a unified deep framework for low-light image enhancement. IEEE Trans. Circuits Syst. Video Technol. 32(3), 1076–1088 (2022). https://doi.org/10.1109/TCSVT.2021.3073371

    Article  Google Scholar 

  35. Zhou, S., Li, C., Change Loy, C.: LEDNet: joint low-light enhancement and deblurring in the dark. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part VI, pp. 573–589. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20068-7_33

  36. Zou, W., et al.: Vqcnir: clearer night image restoration with vector-quantized codebook. arXiv preprint arXiv:2312.08606 (2023)

Download references

Acknowledgment

This work was supported by the innovation fund (No.2021YFB3601400). I am deeply grateful to the development team of the SEE series software for providing the essential simulation support that greatly contributed to the completion of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanjiang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Yang, H., Yang, S., Tang, X., Xu, F., Chen, Q. (2025). HQPAFT: Enhancing Low-Light Images with High-Quality Priors and Advanced Feature Transformations Using Only Normal Light Images. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15283. Springer, Singapore. https://doi.org/10.1007/978-981-96-0122-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0122-6_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0121-9

  • Online ISBN: 978-981-96-0122-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics