Nothing Special   »   [go: up one dir, main page]

Skip to main content

WFSFA-Net: Weighted Feature Supplementation and Cross-Modal Feature Alignment for Visible-Infrared Person Re-identification

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15284))

Included in the following conference series:

  • 268 Accesses

Abstract

Visible-infrared person re-identification (VI-ReID) has captured growing attention for its applications in surveillance within low-light environments. Due to the substantial modality discrepancy and pedestrian variations, VI-ReID remains a challenging task. In this paper, a weighted feature supplementation and feature alignment network (WFSFA-Net) is presented to tackle the primary challenges in VI-ReID. The proposed approach consists of two modules - the Weighted Feature Supplementation (WFS) module and the Cross-modal Feature Alignment (CMFA) module. WFS module can generate supplementary embeddings to mine informative representations to narrow the modality gap. CMFA module mines structural relationships between multi-modal features of the same pedestrian and then aligns these features of the two modalities by using the shortest path algorithm. This process can enhance the model’s robustness and generalization against pedestrian variations. Extensive experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate the effectiveness of our approach, outperforming state-of-the-art methods by more than 3% in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., Wan, L., Li, Z., Jing, Q., Sun, Z.: Neural feature search for RGB-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 587–597 (2021)

    Google Scholar 

  2. Chen, Y., Wang, H., Sun, X., Fan, B., Tang, C., Zeng, H.: Deep attention aware feature learning for person re-identification. Pattern Recogn. 126, 108567 (2022)

    Article  Google Scholar 

  3. Choi, S., Lee, S., Kim, Y., Kim, T., Kim, C.: Hi-CMD: hierarchical cross-modality disentanglement for visible-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10257–10266 (2020)

    Google Scholar 

  4. Fu, C., Hu, Y., Wu, X., Shi, H., Mei, T., He, R.: CM-NAS: cross-modality neural architecture search for visible-infrared person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11823–11832 (2021)

    Google Scholar 

  5. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  6. Huang, Z., Liu, J., Li, L., Zheng, K., Zha, Z.J.: Modality-adaptive mixup and invariant decomposition for RGB-infrared person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1034–1042 (2022)

    Google Scholar 

  7. Li, D., Wei, X., Hong, X., Gong, Y.: Infrared-visible cross-modal person re-identification with an X modality. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4610–4617 (2020)

    Google Scholar 

  8. Liu, H., Xia, D., Jiang, W.: Towards homogeneous modality learning and multi-granularity information exploration for visible-infrared person re-identification. IEEE J. Sel. Top. Sig. Process. 17, 545–559 (2023)

    Article  Google Scholar 

  9. Lu, H., Zou, X., Zhang, P.: Learning progressive modality-shared transformers for effective visible-infrared person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1835–1843 (2023)

    Google Scholar 

  10. Lu, Y., et al.: Cross-modality person re-identification with shared-specific feature transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13379–13389 (2020)

    Google Scholar 

  11. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1487–1495 (2019)

    Google Scholar 

  12. Luo, H., Jiang, W., Zhang, X., Fan, X., Qian, J., Zhang, C.: AlignedReID++: dynamically matching local information for person re-identification. Pattern Recogn. 94, 53–61 (2019)

    Article  Google Scholar 

  13. Nguyen, D.T., Hong, H.G., Kim, K.W., Park, K.R.: Person recognition system based on a combination of body images from visible light and thermal cameras. Sensors 17(3), 605 (2017)

    Article  Google Scholar 

  14. Qian, X., et al.: Pose-normalized image generation for person re-identification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 661–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_40

    Chapter  Google Scholar 

  15. Wang, G.A., et al.: Cross-modality paired-images generation for RGB-infrared person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12144–12151 (2020)

    Google Scholar 

  16. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  17. Wang, Z., Wang, Z., Zheng, Y., Chuang, Y.Y., Satoh, S.: Learning to reduce dual-level discrepancy for infrared-visible person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 618–626 (2019)

    Google Scholar 

  18. Wu, A., Zheng, W.S., Yu, H.X., Gong, S., Lai, J.: RGB-infrared cross-modality person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5380–5389 (2017)

    Google Scholar 

  19. Yang, X., Dong, W., Li, M., Wei, Z., Wang, N., Gao, X.: Cooperative separation of modality shared-specific features for visible-infrared person re-identification. IEEE Trans. Multimedia 26, 1–11 (2024)

    Article  Google Scholar 

  20. Ye, M., Ruan, W., Du, B., Shou, M.Z.: Channel augmented joint learning for visible-infrared recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13567–13576 (2021)

    Google Scholar 

  21. Ye, M., Shen, J., J. Crandall, D., Shao, L., Luo, J.: Dynamic dual-attentive aggregation learning for visible-infrared person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 229–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_14

    Chapter  Google Scholar 

  22. Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.: Deep learning for person re-identification: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 2872–2893 (2021)

    Article  Google Scholar 

  23. Zhang, Q., Lai, C., Liu, J., Huang, N., Han, J.: FMCNet: feature-level modality compensation for visible-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7349–7358 (2022)

    Google Scholar 

  24. Zhang, W., Zhang, Z., Gong, L., Zhang, J., Li, M.: Credible dual-X modality learning for visible and infrared person re-identification. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds.) Trends in Artificial Intelligence, PRICAI 2023. LNCS, vol. 14327, pp. 240–246. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-7025-4_21

  25. Zhang, Y., Wang, H.: Diverse embedding expansion network and low-light cross-modality benchmark for visible-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2153–2162 (2023)

    Google Scholar 

  26. Zheng, L., Huang, Y., Lu, H., Yang, Y.: Pose-invariant embedding for deep person re-identification. IEEE Trans. Image Process. 28(9), 4500–4509 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, H., Zhang, Z., Dong, W., Zhang, C. (2025). WFSFA-Net: Weighted Feature Supplementation and Cross-Modal Feature Alignment for Visible-Infrared Person Re-identification. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15284. Springer, Singapore. https://doi.org/10.1007/978-981-96-0125-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0125-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0124-0

  • Online ISBN: 978-981-96-0125-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics