Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dielectric Lens Antennas

  • Living reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

Dielectric lens antennas are attracting a renewed interest for millimeter- and submillimeter-wave applications where they become compact, especially for configurations with integrated feeds usually referred as integrated lens antennas. Lenses are very flexible and simple to design and fabricate, being a reliable alternative at these frequencies to reflector antennas. Lens target output can range from a simple collimated beam (increasing the feed directivity) to more complex multi-objective specifications.

This chapter presents a review of different types of dielectric lens antennas and lens design methods. Representative lens antenna design examples are described in detail, with emphasis on homogeneous integrated lenses. A review of the different lens analysis methods is performed, followed by the discussion of relevant lens antenna implementation issues like feeding options, dielectric material characteristics, fabrication methods, and a few dedicated measurement techniques. The chapter ends with a detailed presentation of some recent application examples involving dielectric lens antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Afsar MN, Li X, Chi H (1990) An automated 60 GHz open resonator system for precision dielectric measurements. IEEE Trans Microwave Theory Tech 38:1845–1853

    Article  Google Scholar 

  • Artemenko A, Mozharovskiy A, Maltsev A et al (2013a) Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas. IEEE Antennas Wirel Propag Lett 12:1188–1191

    Article  Google Scholar 

  • Artemenko A, Maltsev A, Mozharovskiy A et al (2013b) Millimeter-wave electronically steerable integrated lens antennas for WLAN/WPAN applications. IEEE Trans Antennas Propag 61:1665–1671

    Article  Google Scholar 

  • Bares B, Sauleau R (2007) Design and optimisation of axisymmetric millimetre-wave shaped lens antennas with directive, secant-squared and conical beams. IET Microwaves Antennas Propag 1:433–439

    Article  Google Scholar 

  • Bisognin A, Titz D, Ferrero F et al (2014) 3D printed plastic 60 GHz lens: enabling innovative millimeter wave antenna solution and system. In: Microwave symposium (IMS), IEEE MTT-S international, Tampa Bay, United States, pp 1–4

    Google Scholar 

  • Bor J, Lafond O, Merlet H et al (2014) Technological process to control the foam dielectric constant application to microwave components and antennas. IEEE Trans Compon Packag Manuf Technol 4:938–942

    Article  Google Scholar 

  • Boriskin AV, Vorobyov A, Sauleau R (2011) Two-shell radially symmetric dielectric lenses as low-cost analogs of the Luneburg lens. IEEE Trans Antennas Propag 59:3089–3093

    Article  Google Scholar 

  • Born M, Wolf E (1959) Principles of optics. Pergamon, New York

    Google Scholar 

  • Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2004) Microwave Theory and Techniques for Materials Characterization, in Microwave Electronics: Measurement and Materials Characterization, Wiley, Chichester, UK. doi: 10.1002/0470020466.ch2

    Google Scholar 

  • Cornbleet S (1994) Microwave and geometrical optics. Academic, London

    Google Scholar 

  • Costa JR, Fernandes CA (2007a) Broadband slot feed for integrated lens antennas. IEEE Antennas Wirel Propag Lett 6:396–400

    Article  Google Scholar 

  • Costa JR, Fernandes CA (2007b) Integrated imaging lens antenna with broadband feeds. In: Antennas and propagation, EuCAP 2007. The second European conference, Edinburgh, UK, pp 1–6

    Google Scholar 

  • Costa JR, Silveirinha MG, Fernandes CA (2008a) Evaluation of a double-shell integrated scanning lens antenna. IEEE Antennas Wirel Propag Lett 7:781–784

    Article  Google Scholar 

  • Costa JR, Fernandes CA, Godi G et al (2008b) Compact Ka-band lens antennas for LEO satellites. IEEE Trans Antennas Propag 56:1251–1258

    Article  Google Scholar 

  • Costa JR, Lima EB, Fernandes CA (2009) Compact beam-steerable lens antenna for 60-GHz wireless communications. IEEE Trans Antennas Propag 57:2926–2933

    Article  Google Scholar 

  • Costa JR, Lima EB, Fernandes CA (2010) Antenna phase center determination from amplitude measurements using a focusing lens. In: Antennas and propagation society international symposium, IEEE

    Google Scholar 

  • Do-Hoon K, Werner DH (2010) Transformation electromagnetics: an overview of the theory and applications. IEEE Antennas Propag Mag 52:24–46

    Article  Google Scholar 

  • Edwards JM, O’brient R, Lee AT et al (2012) Dual-polarized sinuous antennas on extended hemispherical silicon lenses. IEEE Trans Antennas Propag 60:4082–4091

    Article  MathSciNet  Google Scholar 

  • Fernandes L (1995) Developing a system concept and technologies for mobile broadband communications. IEEE Pers Commun Mag 2:54

    Article  Google Scholar 

  • Fernandes CA (1999) Shaped dielectric lenses for wireless millimeter-wave communications. IEEE Antennas Propag Mag 41:141–150

    Article  Google Scholar 

  • Fernandes CA (2002) Shaped-beam antennas. In: Godara L (ed) Handbook of antennas in wireless communications. CRC Press, New York, ch 15

    Google Scholar 

  • Fernandes CA, Anunciada LM (2001) Constant flux illumination of square cells for millimeter-wave wireless communications. IEEE Trans Microwave Theory Tech 49:2137–2141

    Article  Google Scholar 

  • Fernandes CA, Costa JR (2009) Permittivity measurement and anisotropy evaluation of dielectric materials at millimeter-waves. In: XIX Imeko world congress: fundamental and applied metrology, proceedings. IMEKO, Budapest, pp 673–677

    Google Scholar 

  • Fernandes CA, Lima EB, Costa JR (2010) Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency. IEEE Trans Antennas Propag 58:3805–3813

    Article  Google Scholar 

  • Fernandes CA, Lima EB, Costa JR (2011) Tapered waveguide feed for integrated dielectric lens antenna performance tests. In: EUROCON – international conference on computer as a tool (EUROCON), IEEE, Lisbon, Portugal, pp 1–4

    Google Scholar 

  • Filipovic DF, Gearhart SS, Rebeiz GM (1993) Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses. IEEE Trans Microwave Theory Tech 41:1738–1749

    Article  Google Scholar 

  • Filipovic DF, Gauthier GP, Raman S et al (1997) Off-axis properties of silicon and quartz dielectric lens antennas. IEEE Trans Antennas Propag 45:760–766

    Article  Google Scholar 

  • Fuchs B, Lafond O, Rondineau S et al (2006) Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves. IEEE Trans Microwave Theory Tech 54:2292–2300

    Article  Google Scholar 

  • Fuchs B, Le Coq L, Lafond O et al (2007a) Design optimization of multishell Luneburg lenses. IEEE Trans Antennas Propag 55:283–289

    Article  Google Scholar 

  • Fuchs B, Lafond O, Rondineau S et al (2007b) Off-axis performances of half Maxwell fish-eye lens antennas at 77 GHz. IEEE Trans Antennas Propag 55:479–482

    Article  Google Scholar 

  • Fuchs B, Lafond O, Palud S et al (2008a) Comparative design and analysis of Luneburg and half Maxwell fish-eye lens antennas. IEEE Trans Antennas Propag 56:3058–3062

    Article  Google Scholar 

  • Fuchs B, Palud S, Le Coq L et al (2008b) Scattering of spherically and hemispherically stratified lenses fed by any real source. IEEE Trans Antennas Propag 56:450–460

    Article  Google Scholar 

  • Hailu DM, Ehtezazi IA, Safavi-Naeini S (2009) Fast analysis of terahertz integrated lens antennas employing the spectral domain ray tracing method. IEEE Antennas Wirel Propag Lett 8:37–39

    Article  Google Scholar 

  • Hailu DM, Ehtezazi IA, Neshat M et al (2011) Hybrid spectral-domain ray tracing method for fast analysis of millimeter-wave and terahertz-integrated antennas. IEEE Trans Terahertz Sci Technol 1:425–434

    Article  Google Scholar 

  • Hirvonen TM, Vainikainen P, Lozowski A et al (1996) Measurement of dielectrics at 100 GHz with an open resonator connected to a network analyzer. IEEE Trans Instrum Meas 45:780–786

    Article  Google Scholar 

  • Ka Fai C, Rui L, Cheng J et al (2014) 77-GHz automotive radar sensor system with antenna integrated package. IEEE Trans Compon Packag Manuf Technol 4:352–359

    Article  Google Scholar 

  • Kay K (1965) Electromagnetic theory and geometrical optics. Interscience, New York

    Google Scholar 

  • Kelleher K (1961) Scanning antennas, chapter 15. In: Jasik H (ed) Antenna engineering handbook. McGraw-Hill, New York

    Google Scholar 

  • Kim KW, Rahmat-Samii Y (1998) Spherical Luneburg lens antennas: engineering characterizations including air gap effects. In: Antennas and propagation society international symposium, vol 2064. IEEE, Atlanta, GA, USA, pp 2062–2065

    Google Scholar 

  • Kolundzija B, Djordjevic A (2002) Electromagnetic modelling of composite metallic and dielectric structures. Artech House, Norwood

    Google Scholar 

  • Komiyama B, Kiyokawa M, Matsui T (1991) Open resonator for precision dielectric measurements in the 100 GHz band. IEEE Trans Microwave Theory Tech 39:1792–1796

    Article  Google Scholar 

  • Komljenovic T, Sauleau R, Sipus Z et al (2010) Layered circular-cylindrical dielectric lens antennas – synthesis and height reduction technique. IEEE Trans Antennas Propag 58:1783–1788

    Article  Google Scholar 

  • Lima E, Costa JR, Silveirinha MG et al (2008) ILASH – software tool for the design of integrated lens antennas. In: Antennas and propagation society international symposium, AP-S 2008. IEEE, San Diego, USA, pp 1–4

    Google Scholar 

  • Ling H, Chou R, Lee S (1989) Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity. IEEE Trans Antennas Propag 37:194–205

    Google Scholar 

  • Llombart N, Lee C, Alonso-Delpino M et al (2013) Silicon micromachined lens antenna for THz integrated heterodyne arrays. IEEE Trans Terahertz Sci Technol 3:515–523

    Article  Google Scholar 

  • Lodge OJ, Howard JL (1888) On electric radiation and its concentration by lenses. Proc Phys Soc Lond 10:143

    Article  Google Scholar 

  • Luneburg RK (1943) US Patent 2,328,157

    Google Scholar 

  • Maciel JJ, Felsen LB (1989) Systematic study of fields due to extended apertures by Gaussian beam discretization. IEEE Trans Antennas Propag 37:884–892

    Article  Google Scholar 

  • Mateo-Segura C, Dyke A, Dyke H et al (2014) Flat Luneburg lens via transformation optics for directive antenna applications. IEEE Trans Antennas Propag 62:1945–1953

    Article  Google Scholar 

  • Maxwell JC (1860) Scientific papers, I. Dover, New York

    Google Scholar 

  • Min L, Wei-Ren N, Kihun C et al (2014) A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping. IEEE Trans Antennas Propag 62:1799–1807

    Article  Google Scholar 

  • Mosallaei H, Rahmat-Samii Y (2001) Nonuniform Luneburg and two-shell lens antennas: radiation characteristics and design optimization. IEEE Trans Antennas Propag 49:60–69

    Article  Google Scholar 

  • Naruse M, Sekimoto Y, Noguchi T et al (2013) Optical efficiencies of lens-antenna coupled kinetic inductance detectors at 220 GHz. IEEE Trans Terahertz Sci Technol 3:180–186

    Article  Google Scholar 

  • Neto A (2010) UWB, non dispersive radiation from the planarly fed leaky lens antenna – part 1: theory and design. IEEE Trans Antennas Propag 58:2238–2247

    Article  Google Scholar 

  • Neto A, Maci S, De Maagt PJI (1998) Reflections inside an elliptical dielectric lens antenna. IEE Proc Microwaves Antennas Propag 145:243–247

    Article  Google Scholar 

  • Neto A, Borselli L, Maci S et al (1999) Input impedance of integrated elliptical lens antennas. IEE Proc Microwaves Antennas Propag 146:181–186

    Article  Google Scholar 

  • Neto A, Monni S, Nennie F (2010) UWB, non dispersive radiation from the planarly fed leaky lens antenna – part II: demonstrators and measurements. IEEE Trans Antennas Propag 58:2248–2258

    Article  Google Scholar 

  • Ngoc Tinh N, Sauleau R, Perez CJM (2009) Very broadband extended hemispherical lenses: role of matching layers for bandwidth enlargement. IEEE Trans Antennas Propag 57:1907–1913

    Article  Google Scholar 

  • Ngoc Tinh N, Delhote N, Ettorre M et al (2010) Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography. IEEE Trans Antennas Propag 58:2757–2762

    Article  Google Scholar 

  • Ngoc Tinh N, Sauleau R, Le Coq L (2011) Reduced-size double-shell lens antenna with flat-top radiation pattern for indoor communications at millimeter waves. IEEE Trans Antennas Propag 59:2424–2429

    Article  Google Scholar 

  • Ngoc Tinh N, Boriskin AV, Rolland A et al (2013) Shaped lens-like dome for UWB antennas with a gaussian-like radiation pattern. IEEE Trans Antennas Propag 61:1658–1664

    Article  Google Scholar 

  • Nguyen NT, Sauleau R, Martinez Perez CJ et al (2010) Finite-difference time-domain simulations of the effects of air gaps in double-shell extended hemispherical lenses. IET Microwaves Antennas Propag 4:35–42

    Article  Google Scholar 

  • Nguyen NT, Sauleau R, Ettorre M et al (2011) Focal array fed dielectric lenses: an attractive solution for beam reconfiguration at millimeter waves. IEEE Trans Antennas Propag 59:2152–2159

    Article  Google Scholar 

  • Nikolic N, James GL, Hellicar A et al (2012) Quarter-sphere Luneburg lens scanning antenna. In: 15th international symposium on antenna technology and applied electromagnetics (ANTEM), pp 1–4

    Google Scholar 

  • Olver A, Clarricoats P, Kishk A, Shafai L (1994) Microwave horns and feeds. IEEE Press, New York, Chap. 11

    Book  Google Scholar 

  • Pasqualini D, Maci S (2004) High-frequency analysis of integrated dielectric lens antennas. IEEE Trans Antennas Propag 52:840–847

    Article  Google Scholar 

  • Pavacic AP, Del Rio DL, Mosig JR et al (2006) Three-dimensional ray-tracing to model internal reflections in off-axis lens antennas. IEEE Trans Antennas Propag 54:604–612

    Article  Google Scholar 

  • Peterson AF, Ray SL, Mittra R (1998) Computational methods of electromagnetics. IEEE Press, New York

    Google Scholar 

  • Petosa A, Ittipiboon A (2000) Shadow blockage effects on the aperture efficiency of dielectric Fresnel lenses. IEE Proc Microwaves Antennas Propag 147:451–454

    Article  Google Scholar 

  • Piksa P, Zvanovec S, Cerny P (2011) Elliptic and hyperbolic dielectric lens antennas in mm-waves. Radioengineering 20:271

    Google Scholar 

  • Rebeiz GM (1992) Millimeter-wave and terahertz integrated circuit antennas. Proc IEEE 80:1748–1770

    Article  Google Scholar 

  • Rolland A, Sauleau R, Le Coq L (2011) Flat-shaped dielectric lens antenna for 60-GHz applications. IEEE Trans Antennas Propag 59:4041–4048

    Article  Google Scholar 

  • Rutledge D, Neikirk D, Kasilingam D (1983) Integrated circuit antennas. In: Button K (ed) Infrared and millimeter-waves, vol 10. Academic, New York, pp 1–90

    Google Scholar 

  • Salema C, Fernandes C, Jha R (1998) Solid dielectric horns. Artech House, Boston, Chap. 7

    Google Scholar 

  • Sanford JR (1994) Scattering by spherically stratified microwave lens antennas. IEEE Trans Antennas Propag 42:690–698

    Article  Google Scholar 

  • Sato K, Ujiie H (2002) A plate Luneburg lens with the permittivity distribution controlled by hole density. Electron Commun Jpn (Part I: Communications) 85:1–12

    Article  Google Scholar 

  • Sauleau R, Bares B (2006) A complete procedure for the design and optimization of arbitrarily shaped integrated lens antennas. IEEE Trans Antennas Propag 54:1122–1133

    Article  Google Scholar 

  • Semenov AD, Richter H, Hubers HW et al (2007) Terahertz performance of integrated lens antennas with a hot-electron bolometer. IEEE Trans Microwave Theory Tech 55:239–247

    Article  Google Scholar 

  • Silveirinha MGMV, Fernandes CA (2000) Shaped double-shell dielectric lenses for wireless millimeter wave communications. In: Antennas and propagation society international symposium, vol 1673. IEEE, Salt Lake City, UT, USA, pp 1674–1677

    Google Scholar 

  • Silveirinha MG, Fernandes CA, Costa JR (2014) A graphical aid for the complex permittivity measurement at microwave and millimeter wavelengths. IEEE Microwave Wireless Compon Lett 24:421–423

    Article  Google Scholar 

  • Silver S (1984) Microwave antenna theory and design. Peter Pereginus, London

    Book  Google Scholar 

  • Trichopoulos GC, Mumcu G, Sertel K et al (2010) A novel approach for improving off-axis pixel performance of terahertz focal plane arrays. IEEE Trans Microwave Theory Tech 58:2014–2021

    Article  Google Scholar 

  • Trichopoulos GC, Mosbacker HL, Burdette D et al (2013) A broadband focal plane array camera for real-time THz imaging applications. IEEE Trans Antennas Propag 61:1733–1740

    Article  Google Scholar 

  • Van Der Vorst MJM, De Maagt PJL (2002) Efficient body of revolution finite-difference time-domain modeling of integrated lens antennas. IEEE Microwave Wireless Compon Lett 12:258–260

    Article  Google Scholar 

  • Van Der Vorst MJM, De Maagt PJL, Herben MHAJ (1999) Effect of internal reflections on the radiation properties and input admittance of integrated lens antennas. IEEE Trans Microwave Theory Tech 47:1696–1704

    Article  Google Scholar 

  • Van Der Vorst MJM, De Maagt PJI, Neto A et al (2001) Effect of internal reflections on the radiation properties and input impedance of integrated lens antennas-comparison between theory and measurements. IEEE Trans Microwave Theory Tech 49:1118–1125

    Article  Google Scholar 

  • Wu X, Eleftheriades G, Van Deventer-Perkins T (2001) Design and characterization of single- and multiple-beam MM-wave circularly polarized substrate lens antennas for wireless communications. IEEE Trans Microwave Theory Tech 49:431–441

    Article  Google Scholar 

  • Xue L, Fusco VF (2007) 24 GHz automotive radar planar Luneburg lens. IET Microwaves Antennas Propag 1:624–628

    Article  Google Scholar 

  • Yurduseven O, Cavallo D, Neto A (2014) Wideband dielectric lens antenna with stable radiation patterns fed by coherent array of connected leaky slots. IEEE Trans Antennas Propag 62:1895–1902

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Fernandes, C.A., Lima, E.B., Costa, J.R. (2015). Dielectric Lens Antennas. In: Chen, Z. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-75-7_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-75-7_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4560-75-7

  • eBook Packages: Living Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics