Abstract
Dielectric lens antennas are attracting a renewed interest for millimeter- and submillimeter-wave applications where they become compact, especially for configurations with integrated feeds usually referred as integrated lens antennas. Lenses are very flexible and simple to design and fabricate, being a reliable alternative at these frequencies to reflector antennas. Lens target output can range from a simple collimated beam (increasing the feed directivity) to more complex multi-objective specifications.
This chapter presents a review of different types of dielectric lens antennas and lens design methods. Representative lens antenna design examples are described in detail, with emphasis on homogeneous integrated lenses. A review of the different lens analysis methods is performed, followed by the discussion of relevant lens antenna implementation issues like feeding options, dielectric material characteristics, fabrication methods, and a few dedicated measurement techniques. The chapter ends with a detailed presentation of some recent application examples involving dielectric lens antennas.
Similar content being viewed by others
References
Afsar MN, Li X, Chi H (1990) An automated 60 GHz open resonator system for precision dielectric measurements. IEEE Trans Microwave Theory Tech 38:1845–1853
Artemenko A, Mozharovskiy A, Maltsev A et al (2013a) Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas. IEEE Antennas Wirel Propag Lett 12:1188–1191
Artemenko A, Maltsev A, Mozharovskiy A et al (2013b) Millimeter-wave electronically steerable integrated lens antennas for WLAN/WPAN applications. IEEE Trans Antennas Propag 61:1665–1671
Bares B, Sauleau R (2007) Design and optimisation of axisymmetric millimetre-wave shaped lens antennas with directive, secant-squared and conical beams. IET Microwaves Antennas Propag 1:433–439
Bisognin A, Titz D, Ferrero F et al (2014) 3D printed plastic 60 GHz lens: enabling innovative millimeter wave antenna solution and system. In: Microwave symposium (IMS), IEEE MTT-S international, Tampa Bay, United States, pp 1–4
Bor J, Lafond O, Merlet H et al (2014) Technological process to control the foam dielectric constant application to microwave components and antennas. IEEE Trans Compon Packag Manuf Technol 4:938–942
Boriskin AV, Vorobyov A, Sauleau R (2011) Two-shell radially symmetric dielectric lenses as low-cost analogs of the Luneburg lens. IEEE Trans Antennas Propag 59:3089–3093
Born M, Wolf E (1959) Principles of optics. Pergamon, New York
Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2004) Microwave Theory and Techniques for Materials Characterization, in Microwave Electronics: Measurement and Materials Characterization, Wiley, Chichester, UK. doi: 10.1002/0470020466.ch2
Cornbleet S (1994) Microwave and geometrical optics. Academic, London
Costa JR, Fernandes CA (2007a) Broadband slot feed for integrated lens antennas. IEEE Antennas Wirel Propag Lett 6:396–400
Costa JR, Fernandes CA (2007b) Integrated imaging lens antenna with broadband feeds. In: Antennas and propagation, EuCAP 2007. The second European conference, Edinburgh, UK, pp 1–6
Costa JR, Silveirinha MG, Fernandes CA (2008a) Evaluation of a double-shell integrated scanning lens antenna. IEEE Antennas Wirel Propag Lett 7:781–784
Costa JR, Fernandes CA, Godi G et al (2008b) Compact Ka-band lens antennas for LEO satellites. IEEE Trans Antennas Propag 56:1251–1258
Costa JR, Lima EB, Fernandes CA (2009) Compact beam-steerable lens antenna for 60-GHz wireless communications. IEEE Trans Antennas Propag 57:2926–2933
Costa JR, Lima EB, Fernandes CA (2010) Antenna phase center determination from amplitude measurements using a focusing lens. In: Antennas and propagation society international symposium, IEEE
Do-Hoon K, Werner DH (2010) Transformation electromagnetics: an overview of the theory and applications. IEEE Antennas Propag Mag 52:24–46
Edwards JM, O’brient R, Lee AT et al (2012) Dual-polarized sinuous antennas on extended hemispherical silicon lenses. IEEE Trans Antennas Propag 60:4082–4091
Fernandes L (1995) Developing a system concept and technologies for mobile broadband communications. IEEE Pers Commun Mag 2:54
Fernandes CA (1999) Shaped dielectric lenses for wireless millimeter-wave communications. IEEE Antennas Propag Mag 41:141–150
Fernandes CA (2002) Shaped-beam antennas. In: Godara L (ed) Handbook of antennas in wireless communications. CRC Press, New York, ch 15
Fernandes CA, Anunciada LM (2001) Constant flux illumination of square cells for millimeter-wave wireless communications. IEEE Trans Microwave Theory Tech 49:2137–2141
Fernandes CA, Costa JR (2009) Permittivity measurement and anisotropy evaluation of dielectric materials at millimeter-waves. In: XIX Imeko world congress: fundamental and applied metrology, proceedings. IMEKO, Budapest, pp 673–677
Fernandes CA, Lima EB, Costa JR (2010) Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency. IEEE Trans Antennas Propag 58:3805–3813
Fernandes CA, Lima EB, Costa JR (2011) Tapered waveguide feed for integrated dielectric lens antenna performance tests. In: EUROCON – international conference on computer as a tool (EUROCON), IEEE, Lisbon, Portugal, pp 1–4
Filipovic DF, Gearhart SS, Rebeiz GM (1993) Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses. IEEE Trans Microwave Theory Tech 41:1738–1749
Filipovic DF, Gauthier GP, Raman S et al (1997) Off-axis properties of silicon and quartz dielectric lens antennas. IEEE Trans Antennas Propag 45:760–766
Fuchs B, Lafond O, Rondineau S et al (2006) Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves. IEEE Trans Microwave Theory Tech 54:2292–2300
Fuchs B, Le Coq L, Lafond O et al (2007a) Design optimization of multishell Luneburg lenses. IEEE Trans Antennas Propag 55:283–289
Fuchs B, Lafond O, Rondineau S et al (2007b) Off-axis performances of half Maxwell fish-eye lens antennas at 77 GHz. IEEE Trans Antennas Propag 55:479–482
Fuchs B, Lafond O, Palud S et al (2008a) Comparative design and analysis of Luneburg and half Maxwell fish-eye lens antennas. IEEE Trans Antennas Propag 56:3058–3062
Fuchs B, Palud S, Le Coq L et al (2008b) Scattering of spherically and hemispherically stratified lenses fed by any real source. IEEE Trans Antennas Propag 56:450–460
Hailu DM, Ehtezazi IA, Safavi-Naeini S (2009) Fast analysis of terahertz integrated lens antennas employing the spectral domain ray tracing method. IEEE Antennas Wirel Propag Lett 8:37–39
Hailu DM, Ehtezazi IA, Neshat M et al (2011) Hybrid spectral-domain ray tracing method for fast analysis of millimeter-wave and terahertz-integrated antennas. IEEE Trans Terahertz Sci Technol 1:425–434
Hirvonen TM, Vainikainen P, Lozowski A et al (1996) Measurement of dielectrics at 100 GHz with an open resonator connected to a network analyzer. IEEE Trans Instrum Meas 45:780–786
Ka Fai C, Rui L, Cheng J et al (2014) 77-GHz automotive radar sensor system with antenna integrated package. IEEE Trans Compon Packag Manuf Technol 4:352–359
Kay K (1965) Electromagnetic theory and geometrical optics. Interscience, New York
Kelleher K (1961) Scanning antennas, chapter 15. In: Jasik H (ed) Antenna engineering handbook. McGraw-Hill, New York
Kim KW, Rahmat-Samii Y (1998) Spherical Luneburg lens antennas: engineering characterizations including air gap effects. In: Antennas and propagation society international symposium, vol 2064. IEEE, Atlanta, GA, USA, pp 2062–2065
Kolundzija B, Djordjevic A (2002) Electromagnetic modelling of composite metallic and dielectric structures. Artech House, Norwood
Komiyama B, Kiyokawa M, Matsui T (1991) Open resonator for precision dielectric measurements in the 100 GHz band. IEEE Trans Microwave Theory Tech 39:1792–1796
Komljenovic T, Sauleau R, Sipus Z et al (2010) Layered circular-cylindrical dielectric lens antennas – synthesis and height reduction technique. IEEE Trans Antennas Propag 58:1783–1788
Lima E, Costa JR, Silveirinha MG et al (2008) ILASH – software tool for the design of integrated lens antennas. In: Antennas and propagation society international symposium, AP-S 2008. IEEE, San Diego, USA, pp 1–4
Ling H, Chou R, Lee S (1989) Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity. IEEE Trans Antennas Propag 37:194–205
Llombart N, Lee C, Alonso-Delpino M et al (2013) Silicon micromachined lens antenna for THz integrated heterodyne arrays. IEEE Trans Terahertz Sci Technol 3:515–523
Lodge OJ, Howard JL (1888) On electric radiation and its concentration by lenses. Proc Phys Soc Lond 10:143
Luneburg RK (1943) US Patent 2,328,157
Maciel JJ, Felsen LB (1989) Systematic study of fields due to extended apertures by Gaussian beam discretization. IEEE Trans Antennas Propag 37:884–892
Mateo-Segura C, Dyke A, Dyke H et al (2014) Flat Luneburg lens via transformation optics for directive antenna applications. IEEE Trans Antennas Propag 62:1945–1953
Maxwell JC (1860) Scientific papers, I. Dover, New York
Min L, Wei-Ren N, Kihun C et al (2014) A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping. IEEE Trans Antennas Propag 62:1799–1807
Mosallaei H, Rahmat-Samii Y (2001) Nonuniform Luneburg and two-shell lens antennas: radiation characteristics and design optimization. IEEE Trans Antennas Propag 49:60–69
Naruse M, Sekimoto Y, Noguchi T et al (2013) Optical efficiencies of lens-antenna coupled kinetic inductance detectors at 220 GHz. IEEE Trans Terahertz Sci Technol 3:180–186
Neto A (2010) UWB, non dispersive radiation from the planarly fed leaky lens antenna – part 1: theory and design. IEEE Trans Antennas Propag 58:2238–2247
Neto A, Maci S, De Maagt PJI (1998) Reflections inside an elliptical dielectric lens antenna. IEE Proc Microwaves Antennas Propag 145:243–247
Neto A, Borselli L, Maci S et al (1999) Input impedance of integrated elliptical lens antennas. IEE Proc Microwaves Antennas Propag 146:181–186
Neto A, Monni S, Nennie F (2010) UWB, non dispersive radiation from the planarly fed leaky lens antenna – part II: demonstrators and measurements. IEEE Trans Antennas Propag 58:2248–2258
Ngoc Tinh N, Sauleau R, Perez CJM (2009) Very broadband extended hemispherical lenses: role of matching layers for bandwidth enlargement. IEEE Trans Antennas Propag 57:1907–1913
Ngoc Tinh N, Delhote N, Ettorre M et al (2010) Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography. IEEE Trans Antennas Propag 58:2757–2762
Ngoc Tinh N, Sauleau R, Le Coq L (2011) Reduced-size double-shell lens antenna with flat-top radiation pattern for indoor communications at millimeter waves. IEEE Trans Antennas Propag 59:2424–2429
Ngoc Tinh N, Boriskin AV, Rolland A et al (2013) Shaped lens-like dome for UWB antennas with a gaussian-like radiation pattern. IEEE Trans Antennas Propag 61:1658–1664
Nguyen NT, Sauleau R, Martinez Perez CJ et al (2010) Finite-difference time-domain simulations of the effects of air gaps in double-shell extended hemispherical lenses. IET Microwaves Antennas Propag 4:35–42
Nguyen NT, Sauleau R, Ettorre M et al (2011) Focal array fed dielectric lenses: an attractive solution for beam reconfiguration at millimeter waves. IEEE Trans Antennas Propag 59:2152–2159
Nikolic N, James GL, Hellicar A et al (2012) Quarter-sphere Luneburg lens scanning antenna. In: 15th international symposium on antenna technology and applied electromagnetics (ANTEM), pp 1–4
Olver A, Clarricoats P, Kishk A, Shafai L (1994) Microwave horns and feeds. IEEE Press, New York, Chap. 11
Pasqualini D, Maci S (2004) High-frequency analysis of integrated dielectric lens antennas. IEEE Trans Antennas Propag 52:840–847
Pavacic AP, Del Rio DL, Mosig JR et al (2006) Three-dimensional ray-tracing to model internal reflections in off-axis lens antennas. IEEE Trans Antennas Propag 54:604–612
Peterson AF, Ray SL, Mittra R (1998) Computational methods of electromagnetics. IEEE Press, New York
Petosa A, Ittipiboon A (2000) Shadow blockage effects on the aperture efficiency of dielectric Fresnel lenses. IEE Proc Microwaves Antennas Propag 147:451–454
Piksa P, Zvanovec S, Cerny P (2011) Elliptic and hyperbolic dielectric lens antennas in mm-waves. Radioengineering 20:271
Rebeiz GM (1992) Millimeter-wave and terahertz integrated circuit antennas. Proc IEEE 80:1748–1770
Rolland A, Sauleau R, Le Coq L (2011) Flat-shaped dielectric lens antenna for 60-GHz applications. IEEE Trans Antennas Propag 59:4041–4048
Rutledge D, Neikirk D, Kasilingam D (1983) Integrated circuit antennas. In: Button K (ed) Infrared and millimeter-waves, vol 10. Academic, New York, pp 1–90
Salema C, Fernandes C, Jha R (1998) Solid dielectric horns. Artech House, Boston, Chap. 7
Sanford JR (1994) Scattering by spherically stratified microwave lens antennas. IEEE Trans Antennas Propag 42:690–698
Sato K, Ujiie H (2002) A plate Luneburg lens with the permittivity distribution controlled by hole density. Electron Commun Jpn (Part I: Communications) 85:1–12
Sauleau R, Bares B (2006) A complete procedure for the design and optimization of arbitrarily shaped integrated lens antennas. IEEE Trans Antennas Propag 54:1122–1133
Semenov AD, Richter H, Hubers HW et al (2007) Terahertz performance of integrated lens antennas with a hot-electron bolometer. IEEE Trans Microwave Theory Tech 55:239–247
Silveirinha MGMV, Fernandes CA (2000) Shaped double-shell dielectric lenses for wireless millimeter wave communications. In: Antennas and propagation society international symposium, vol 1673. IEEE, Salt Lake City, UT, USA, pp 1674–1677
Silveirinha MG, Fernandes CA, Costa JR (2014) A graphical aid for the complex permittivity measurement at microwave and millimeter wavelengths. IEEE Microwave Wireless Compon Lett 24:421–423
Silver S (1984) Microwave antenna theory and design. Peter Pereginus, London
Trichopoulos GC, Mumcu G, Sertel K et al (2010) A novel approach for improving off-axis pixel performance of terahertz focal plane arrays. IEEE Trans Microwave Theory Tech 58:2014–2021
Trichopoulos GC, Mosbacker HL, Burdette D et al (2013) A broadband focal plane array camera for real-time THz imaging applications. IEEE Trans Antennas Propag 61:1733–1740
Van Der Vorst MJM, De Maagt PJL (2002) Efficient body of revolution finite-difference time-domain modeling of integrated lens antennas. IEEE Microwave Wireless Compon Lett 12:258–260
Van Der Vorst MJM, De Maagt PJL, Herben MHAJ (1999) Effect of internal reflections on the radiation properties and input admittance of integrated lens antennas. IEEE Trans Microwave Theory Tech 47:1696–1704
Van Der Vorst MJM, De Maagt PJI, Neto A et al (2001) Effect of internal reflections on the radiation properties and input impedance of integrated lens antennas-comparison between theory and measurements. IEEE Trans Microwave Theory Tech 49:1118–1125
Wu X, Eleftheriades G, Van Deventer-Perkins T (2001) Design and characterization of single- and multiple-beam MM-wave circularly polarized substrate lens antennas for wireless communications. IEEE Trans Microwave Theory Tech 49:431–441
Xue L, Fusco VF (2007) 24 GHz automotive radar planar Luneburg lens. IET Microwaves Antennas Propag 1:624–628
Yurduseven O, Cavallo D, Neto A (2014) Wideband dielectric lens antenna with stable radiation patterns fed by coherent array of connected leaky slots. IEEE Trans Antennas Propag 62:1895–1902
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media Singapore
About this entry
Cite this entry
Fernandes, C.A., Lima, E.B., Costa, J.R. (2015). Dielectric Lens Antennas. In: Chen, Z. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-75-7_40-1
Download citation
DOI: https://doi.org/10.1007/978-981-4560-75-7_40-1
Received:
Accepted:
Published:
Publisher Name: Springer, Singapore
Online ISBN: 978-981-4560-75-7
eBook Packages: Living Reference EngineeringReference Module Computer Science and Engineering