Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Real Polynomial Decision Algorithm Using Arbitrary-Precision Floating Point Arithmetic

  • Chapter
Developments in Reliable Computing

Abstract

We study the problem of deciding whether a system of real polynomial equations and inequalities has solutions, and if yes finding a sample solution. For polynomials with exact rational number coefficients the problem can be solved using a variant of the cylindrical algebraic decomposition (CAD) algorithm. We investigate how the CAD algorithm can be adapted to the situation when the coefficients are inexact, or, more precisely, Mathematica arbitrary-precision floating point numbers. We investigate what changes need to be made in algorithms used by CAD, and how reliable are the results we get.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akritas, A., Bocharov, A., and Strzebonski, A.: Implementation of Real Root Isolation Algorithms in Mathematica, in: International Conference INTERVAL’94. Abstracts, St.Petersburg, Russia, 1994, pp. 23–27.

    Google Scholar 

  2. Caviness, B. and Johnson, J., (eds): Quantifier Elimination and Cylindrical Algebraic Decomposition, Springer-Verlag, 1998.

    Google Scholar 

  3. Collins, G. E.: Quantifier Elimination for the Elementary Theory of Real Closed Fields by Cylindrical Algebraic Decomposition, Lect. Notes Comput. Sci. 33 (1975), pp. 134–183.

    Article  Google Scholar 

  4. Collins, G. E. and Hong, H.: Partial Cylindrical Algebraic Decomposition for Quantifier Elimination, J. Symbolic Comp. 12 (1991), pp. 299–328.

    Article  MathSciNet  MATH  Google Scholar 

  5. Hong, H.: An Improvement of the Projection Operator in Cylindrical Algebraic Decomposition, in: Proceedings of ISSAC,1990, pp. 261–264.

    Google Scholar 

  6. Jirstrand, M.: Constructive Methods for Inequality Constraints in Control, Linkoping Studies in Science and Technology, Dissertations 527 (1998).

    Google Scholar 

  7. Keiper, J. B. and Withoff, D.: Numerical Computation in Mathematica, in: Course Notes, Math-ematica Conference, 1992.

    Google Scholar 

  8. McCallum, S.: An Improved Projection for Cylindrical Algebraic Decomposition, in: Caviness, B. and Johnson, J. (eds), Quantifier Elimination and Cylindrical Algebraic Decomposition, Springer-Verlag, 1998.

    Google Scholar 

  9. McCallum, S.: An Improved Projection for Cylindrical Algebraic Decomposition of Three Dimensional Space, J. Symbolic Comp. 5 (1988), pp. 141–161.

    Article  MathSciNet  MATH  Google Scholar 

  10. McCallum, S.: Using Cylindrical Algebraic Decomposition, The Computer Journal 36 (5) (1993), pp. 432–438.

    Article  MathSciNet  MATH  Google Scholar 

  11. Mitrinovic, D., Pecaric, J. E., and Volenec, V.: Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, 1989.

    Google Scholar 

  12. Strzebonski, A.: An Algorithm for Systems of Strong Polynomial Inequalities, The Mathematica Journal 4 (4) (1994), pp. 74–77.

    Google Scholar 

  13. Strzebonski, A.: Computing in the Field of Complex Algebraic Numbers, J. Symbolic Comp. 24 (1997), pp. 647–656.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wolfram, S.: The Mathematica Book, 3rd. Ed., 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Strzebonski, A. (1999). A Real Polynomial Decision Algorithm Using Arbitrary-Precision Floating Point Arithmetic. In: Csendes, T. (eds) Developments in Reliable Computing. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1247-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1247-7_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5350-3

  • Online ISBN: 978-94-017-1247-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics