Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparing Partial Consistencies

  • Chapter
Developments in Reliable Computing

Abstract

Global search algorithms have been widely used in the constraint programming framework to solve constraint systems over continuous domains. This paper precisely states the relations among the different partial consistencies which are main emphasis of these algorithms.

The capability of these partial consistencies to handle the so-called dependency problem is analysed and some efficiency aspects of the filtering algorithms are mentioned.

This is a revised version of the paper presented at the 4th International Conference on Constraint Programming [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benhamou, F., Goualard, F., and Granvilliers, L.: Programming with the DecLIC Language, in: Proceedings of the Second Workshop on Interval Constraints, Port-Jefferson, NY, 1997.

    Google Scholar 

  2. Benhamou, F., Mc Allester, D., and Van Hentenryck, P.: CLP(Intervals) Revisited, in: Proc. Logic Programming: Proceedings of the 1994 International Symposium, MIT Press, 1994.

    Google Scholar 

  3. Benhamou, F. and Older, W.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints, Journal of Logic Programming 32 (1997), pp. 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  4. Brent, R. P.: A FORTRAN Multiple-Precision Arithmetic Package, ACM Trans. on Math. Software 4 (1) (1978), pp. 57–70.

    Article  Google Scholar 

  5. Cleary, J. C.: Logical Arithmetic, Future Computing Systems 2 (2) (1987), pp. 125–149.

    Google Scholar 

  6. Collavizza, H., Delobel, F., and Rueher, M.: A Note on Partial Consistencies over Continuous Domains Solving Techniques, in: Proc. CP98 (Fourth International Conference on Principles and Practice of Constraint Programming), LNCS 1520, Springer Verlag, 1998.

    Google Scholar 

  7. Faltings, B.: Arc-Consistency for Continuous Variables, Artificial Intelligence 65 (1994), pp. 363–376.

    Article  MathSciNet  MATH  Google Scholar 

  8. Freuder, E. C.: Synthesizing Constraint Expressions, Communications of the ACM 21 (1978), pp. 958–966.

    Article  MathSciNet  MATH  Google Scholar 

  9. Granvilliers, L.: On the Combination of Box-Consistency and Hull-Consistency, Workshop ECAI on Non Binary-Constraints, Brighton, United Kingdom, 1998

    Google Scholar 

  10. Hansen, E.: Global Optimization Using Interval Analysis, Marcel Dekker, NY, 1992.

    MATH  Google Scholar 

  11. Hong, H., Stahl, V.: Safe Starting Regions by Fixed Points and Tightening, Computing 53 (1994), pp. 323–335.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hyvönen, E.: Constraint Reasoning Based on Interval Arithmetic: The Tolerance Propagation Approach, Artificial Intelligence 58 (1992), pp. 71–112.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, Netherlands, 1996.

    Google Scholar 

  14. Lebbah, Y. and Lhomme, O.: Acceleration Methods for Numeric CSPs AAAI, MIT Press, 1998.

    Google Scholar 

  15. Lee, J. H. M. and Van Emden, M. H.: Interval Computation as Deduction in CHIP, Journal of Logic Programming 16 (1993), pp. 255–276.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lhomme, O.: Consistency Techniques for Numeric CSPs, in: Proc. IJCAI93, Chambery, France, 1993, pp. 232–238.

    Google Scholar 

  17. Lhomme, O. and Rueher, M.: Application des techniques CSP au raisonnement sur les intervalles, RIA (Dunod) 11 (3) (1997), pp. 283–312.

    MATH  Google Scholar 

  18. Mackworth, A.: Consistency in Networks of Relations, Artificial Intelligence 8 (1) (1997), pp. 99–118.

    Article  MathSciNet  Google Scholar 

  19. Montanari, U.: Networks of Constraints: Fundamental Properties and Applications to Picture Processing, Information Science 7 (2) (1974), pp. 95–132.

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, R.: Interval Analysis, Prentice Hall, 1966.

    Google Scholar 

  21. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, 1990.

    Google Scholar 

  22. Neumaier, A., Dallwig, S., and Schichl, H.: GLOPT-A Program for Constrained Global Optimization, in: Bomze, I. et al. (eds.), Developments in Global Optimization, Kluwer Academic Publishers, Dordrecht, 1997, pp. 19–36.

    Google Scholar 

  23. Older, W. J. and Vellino, A.: Extending Prolog with Constraint Arithmetic on Real Intervals, in: Proc. of IEEE Canadian Conference on Electrical and Computer Engineering, IEEE Computer Society Press, 1990.

    Google Scholar 

  24. Puget, J.-F. and Van Hentenryck, P.: A Constraint Satisfaction Approach to a Circuit Design Problem, Journal of Global Optimization 13 (1998), pp. 75–93.

    Article  MATH  Google Scholar 

  25. Prologia: PrologIV Constraints Inside,Parc technologique de Luminy—Case 919 13288 Marseille cedex 09, France, 1996.

    Google Scholar 

  26. Rueher, M. and Solnon, C.: Concurrent Cooperating Solvers within the Reals, Reliable Computing 3 (3) (1997), pp. 325–333.

    Article  MATH  Google Scholar 

  27. Tsang, E.: Foundations of Constraint Satisfaction, Academic Press, 1993.

    Google Scholar 

  28. Van Hentenryck, P., Deville, Y., and Michel, L.: Numerica. A Modeling Language for Global Optimization, MIT Press, 1997.

    Google Scholar 

  29. Van Hentenryck, P., McAllester, D., and Kapur, D.: Solving Polynomial Systems Using a Branch and Prune Approach, SIAM Journal on Numerical Analysis 34 (2) (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Collavizza, H., Delobel, F., Rueher, M. (1999). Comparing Partial Consistencies. In: Csendes, T. (eds) Developments in Reliable Computing. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1247-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1247-7_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5350-3

  • Online ISBN: 978-94-017-1247-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics