Abstract
Global search algorithms have been widely used in the constraint programming framework to solve constraint systems over continuous domains. This paper precisely states the relations among the different partial consistencies which are main emphasis of these algorithms.
The capability of these partial consistencies to handle the so-called dependency problem is analysed and some efficiency aspects of the filtering algorithms are mentioned.
This is a revised version of the paper presented at the 4th International Conference on Constraint Programming [6].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benhamou, F., Goualard, F., and Granvilliers, L.: Programming with the DecLIC Language, in: Proceedings of the Second Workshop on Interval Constraints, Port-Jefferson, NY, 1997.
Benhamou, F., Mc Allester, D., and Van Hentenryck, P.: CLP(Intervals) Revisited, in: Proc. Logic Programming: Proceedings of the 1994 International Symposium, MIT Press, 1994.
Benhamou, F. and Older, W.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints, Journal of Logic Programming 32 (1997), pp. 1–24.
Brent, R. P.: A FORTRAN Multiple-Precision Arithmetic Package, ACM Trans. on Math. Software 4 (1) (1978), pp. 57–70.
Cleary, J. C.: Logical Arithmetic, Future Computing Systems 2 (2) (1987), pp. 125–149.
Collavizza, H., Delobel, F., and Rueher, M.: A Note on Partial Consistencies over Continuous Domains Solving Techniques, in: Proc. CP98 (Fourth International Conference on Principles and Practice of Constraint Programming), LNCS 1520, Springer Verlag, 1998.
Faltings, B.: Arc-Consistency for Continuous Variables, Artificial Intelligence 65 (1994), pp. 363–376.
Freuder, E. C.: Synthesizing Constraint Expressions, Communications of the ACM 21 (1978), pp. 958–966.
Granvilliers, L.: On the Combination of Box-Consistency and Hull-Consistency, Workshop ECAI on Non Binary-Constraints, Brighton, United Kingdom, 1998
Hansen, E.: Global Optimization Using Interval Analysis, Marcel Dekker, NY, 1992.
Hong, H., Stahl, V.: Safe Starting Regions by Fixed Points and Tightening, Computing 53 (1994), pp. 323–335.
Hyvönen, E.: Constraint Reasoning Based on Interval Arithmetic: The Tolerance Propagation Approach, Artificial Intelligence 58 (1992), pp. 71–112.
Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, Netherlands, 1996.
Lebbah, Y. and Lhomme, O.: Acceleration Methods for Numeric CSPs AAAI, MIT Press, 1998.
Lee, J. H. M. and Van Emden, M. H.: Interval Computation as Deduction in CHIP, Journal of Logic Programming 16 (1993), pp. 255–276.
Lhomme, O.: Consistency Techniques for Numeric CSPs, in: Proc. IJCAI93, Chambery, France, 1993, pp. 232–238.
Lhomme, O. and Rueher, M.: Application des techniques CSP au raisonnement sur les intervalles, RIA (Dunod) 11 (3) (1997), pp. 283–312.
Mackworth, A.: Consistency in Networks of Relations, Artificial Intelligence 8 (1) (1997), pp. 99–118.
Montanari, U.: Networks of Constraints: Fundamental Properties and Applications to Picture Processing, Information Science 7 (2) (1974), pp. 95–132.
Moore, R.: Interval Analysis, Prentice Hall, 1966.
Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, 1990.
Neumaier, A., Dallwig, S., and Schichl, H.: GLOPT-A Program for Constrained Global Optimization, in: Bomze, I. et al. (eds.), Developments in Global Optimization, Kluwer Academic Publishers, Dordrecht, 1997, pp. 19–36.
Older, W. J. and Vellino, A.: Extending Prolog with Constraint Arithmetic on Real Intervals, in: Proc. of IEEE Canadian Conference on Electrical and Computer Engineering, IEEE Computer Society Press, 1990.
Puget, J.-F. and Van Hentenryck, P.: A Constraint Satisfaction Approach to a Circuit Design Problem, Journal of Global Optimization 13 (1998), pp. 75–93.
Prologia: PrologIV Constraints Inside,Parc technologique de Luminy—Case 919 13288 Marseille cedex 09, France, 1996.
Rueher, M. and Solnon, C.: Concurrent Cooperating Solvers within the Reals, Reliable Computing 3 (3) (1997), pp. 325–333.
Tsang, E.: Foundations of Constraint Satisfaction, Academic Press, 1993.
Van Hentenryck, P., Deville, Y., and Michel, L.: Numerica. A Modeling Language for Global Optimization, MIT Press, 1997.
Van Hentenryck, P., McAllester, D., and Kapur, D.: Solving Polynomial Systems Using a Branch and Prune Approach, SIAM Journal on Numerical Analysis 34 (2) (1997).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Collavizza, H., Delobel, F., Rueher, M. (1999). Comparing Partial Consistencies. In: Csendes, T. (eds) Developments in Reliable Computing. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1247-7_17
Download citation
DOI: https://doi.org/10.1007/978-94-017-1247-7_17
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-5350-3
Online ISBN: 978-94-017-1247-7
eBook Packages: Springer Book Archive