Nothing Special   »   [go: up one dir, main page]

Skip to main content

Iterable AGM Functions

  • Chapter
Frontiers in Belief Revision

Part of the book series: Applied Logic Series ((APLS,volume 22))

Abstract

The issue of iterated theory change is indeed interesting. Legal codes are under constant modification, new discoveries shape scientific theories, and robots ought to update their representation of the world each time a sensor gains new data. A pertinent criticism to the AGM formalism of theory change [Alchourrón et al.,1985] is its lack of definition with respect to iterated change. Let’s start by introducing the basic elements in the AGM framework

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Alchourrón and D. Makinson. On the logic of theory change: Contraction functions and their associated revision functions. Theoria, 48, 14–37, 1982.

    Article  MathSciNet  Google Scholar 

  2. C. Alchourrón and D. Makinson. The logic of theory change: Safe contraction. Studia Logica, 44, 405–422, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alchourrón et al.,1985] C. Alchourr6n, P. Gärdenfors and D. Makinson. On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic,50 510–530, 1985.

    Google Scholar 

  4. V. Becher. Unified semantics for revision and update, or the theory of lazy update. In Annals of the 24 Jornadas Argentinas de Inforrnótica e Investigación Operativa (fAI1O), 1995.

    Google Scholar 

  5. V. Becher. Iterable AGM revision based on fixed orderings. Technical report, Depar-tamento de Computaci6n. FCEyN. UBA, January 1998.

    Google Scholar 

  6. C. Boutilier. Iterated revision and minimal revision of conditional beliefs. Journal of Philosophical Logic, 25, 263–305, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Darwiche and J. Pearl. On the logic of iterated belief revision. Artificial Intelligence, 89, 1–29, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Freund and D. Lehmann. Belief revision and rational inference. Technical Report 94–16, The Leibniz Center. Hebrew University, Jerusalem, Israel, 1994.

    Google Scholar 

  9. N. Friedman and 1. Halpern. A qualitative Markov assumption and its implications for belief change. In Uncertainty in artificial intelligence (Portland, OR, 1996), pp. 263–273. Morgan Kaufmann, San Francisco, CA, 1996.

    Google Scholar 

  10. Gärdenfors and Makinson, 1988] P. Gärdenfors and D. Makinson. Revisions of knowledge systems using epistemic entrenchment. In Proceedings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge (Pacific Grove, CA, 1988),pp. 83–95, Los Altos, CA, 1988. Morgan Kaufmann.

    Google Scholar 

  11. P. Gärdenfors and D. Makinson. Relations between the logic of theory change and nonmonotonic logic. In The logic of theory change (Konstanz, 1989), pp. 185205. Springer, Berlin, 1991.

    Google Scholar 

  12. A. Grove. Two modellings for theory change. Journal of Philosophical Logic, 17, 157–170, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansson, 1994] S. Hansson. Kernel contraction. The Journal of Symbolic Logic,59 845–859, 1994. [Hansson, To come] S. Hansson. A Textbook of Belief Dynamics. Kluwer Academic Publisher, To come. Manuscript.

    Google Scholar 

  14. H. Katsuno and A. Mendelzon. On the difference between updating a knowledge database and revising it. In Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, pp. 387–394, Cambridge, 1991.

    Google Scholar 

  15. Lehmann et al.,1996] D. Lehmann, M. Magidor and K. Schlechta. Distance semantics for belief revision. In Proceedings of the Sixth Conference of Theoretical Aspects of Rationality and Knowledge,Y. Shoham, ed. pp. 137–146, San Francisco, 1996. Morgan Kaufmann.

    Google Scholar 

  16. D. Lehmann. Belief revision, revised. In IJCAI-95, Vol. 1, 2 (Montreal, PQ, 1995), pp. 1534–1540. Morgan Kaufmann, San Francisco, CA, 1995.

    Google Scholar 

  17. D. Makinson. Five faces of minimality. Studia Logica. An International Journal for Symbolic Logic, 52, 339–379, 1993.

    MathSciNet  MATH  Google Scholar 

  18. A. Nayak. Iterated belief change based on epistemic entrenchment. Erkenntnis. An International Journal of Analytic Philosophy, 41, 353–390. 1994.

    Article  MathSciNet  Google Scholar 

  19. H. Ron. On the logic of theory change: More maps between different kinds of contraction functions. In Belief Revision, volume 29, P. Gärdenfors, ed. pp. 122–141. Cambridge Univ. Press, Cambridge, 1992.

    Google Scholar 

  20. H. Rott. Preferential belief change using generalized epistemic entrenchment. Journal of Logic, Language and Information, 1, 45–78, 1992.

    MathSciNet  MATH  Google Scholar 

  21. W. Spohn. Ordinal conditional functions: A dynamic theory of epistemic states. In Causation in Decision, Belief Change and Statistics, volume 2, W. Harper and B. Skyrms, eds. pp. 105–134. D. Reidel, Dordrecht, 1987.

    Google Scholar 

  22. M. Williams. Iterated theory base change: A computational model. In IJCAI-95 Proceeding of the 14th International Joint Conference on Artificial Intelligence, pp. 1541–1550. Morgan Kauffman, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Areces, C., Becher, V. (2001). Iterable AGM Functions. In: Williams, MA., Rott, H. (eds) Frontiers in Belief Revision. Applied Logic Series, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9817-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9817-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5720-4

  • Online ISBN: 978-94-015-9817-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics