Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Approach for Automatic Indic Script Identification from Handwritten Document Images

  • Chapter
  • First Online:
Advanced Computing and Systems for Security

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 396))

  • 762 Accesses

Abstract

Script identification from document images has received considerable attention from the researchers since couple of years. In this paper, an approach for HSI (Handwritten Script Identification) from document images written by any one of the eight Indic scripts is proposed. A dataset of 782 Line-level handwritten document images are collected with almost equal distribution of each script type. The average Eight-script and Bi-script identification rate has been found to be 95.7 % and 98.51 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Obaidullah, S.M., Das, S.K., Roy, K.: A system for handwritten script identification from indian document. J. Pattern Recogn. Res. 8(1), 1–12 (2013)

    Article  Google Scholar 

  2. Ghosh, D., Dube, T., Shivprasad, S.P.: Script recognition—a review. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2142–2161 (2010)

    Article  Google Scholar 

  3. Pal, U., Chaudhuri, B.B.: Identification of different script lines from multi-script documents. Image Vis. Comput. 20(13-14), 945–954 (2002)

    Article  Google Scholar 

  4. Hochberg, J., Kelly, P., Thomas, T., Kerns, L.: Automatic script identification from document images using cluster-based templates. IEEE Trans. Pattern Anal. Mach. Intell. 19, 176–181 (1997)

    Article  Google Scholar 

  5. Chaudhury, S., Harit, G, Madnani, S., Shet, R.B.: Identification of scripts of Indian languages by combining trainable classifiers. In: Proceedings of Indian Conference on Computer Vision, Graphics and Image Processing, 20–22 Dec 2000, Bangalore, India (2000)

    Google Scholar 

  6. Pal, U., Chaudhuri, B.B.: Script line separation from Indian multi-script documents. IETE J. Res. 49, 3–11 (2003)

    Article  Google Scholar 

  7. Pati, P.B., Ramakrishnan, A.G.: Word level multi-script identification. Pattern Recogn. Lett. 29(9), 1218–1229 (2008)

    Article  Google Scholar 

  8. Obaidullah, S.M., Mondal, A., Das, N., Roy, K.: Structural feature based approach for script identification from printed Indian document. In: Proceedings of International Conference on Signal Processing and Integrated Networks, pp. 120–124 (2014)

    Google Scholar 

  9. Hochberg, J., Bowers, K., Cannon, M., Kelly, P.: Script and language identification for handwritten document images. Int. J. Doc. Anal. Recogn. 2(2/3), 45–52 (1999)

    Article  Google Scholar 

  10. Zhou, L., Lu, Y., Tan, C.L.: Bangla/English script identification based on analysis of connected component profiles. In: Lecture Notes in Computer Science, vol. 3872/2006, 24354 (2006). doi:10.1007/11669487_22

    Google Scholar 

  11. Singhal, V., Navin, N., Ghosh, D.: Script-based classification of hand-written text document in a multilingual environment. In: Research Issues in Data Engineering, p. 47 (2003)

    Google Scholar 

  12. Roy, K., Banerjee, A., Pal, U.: A System for word-wise handwritten script identification for indian postal automation. In: Proceedings of IEEE India Annual Conference, pp. 266–271 (2004)

    Google Scholar 

  13. Hangarge, M., Dhandra, B.V.: Offline handwritten script identification in document images. Int. J. Comput. Appl. 4(6), 6–10 (2010)

    Google Scholar 

  14. Hangarge, M., Santosh, K.C., Pardeshi, R.: Directional discrete cosine transform for handwritten script identification. In: Proceedings of 12th International Conference on Document Analysis and Recognition, pp. 344–348 (2013)

    Google Scholar 

  15. Pardeshi, R., Chaudhury, B.B., Hangarge, M., Santosh, K.C.: Automatic handwritten Indian scripts identification. In: Proceedings of 14th International Conference on Frontiers in Handwriting Recognition, pp. 375–380 (2014)

    Google Scholar 

  16. Obaidullah, S.M., Mondal, A., Das, N., Roy, K.: Script identification from printed Indian document images and performance evaluation using different classifiers. Appl. Comput. Intell. Soft Comput. 2014(Article ID 896128), 12 (2014). doi:10.1155/2014/896128

    Google Scholar 

  17. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1982)

    MATH  Google Scholar 

  18. Bradski, G., Kaehler, A.: Learning OpenCV. O’Reilly Med., California (2008)

    Google Scholar 

  19. Shiv Naga Prasad, V., Domke, J.: Gabor filter visualization. Technical Report, University of Maryland (2005)

    Google Scholar 

  20. Aleai, A., Nagabhushan, P., Pal, U.: A benchmark kannada handwritten document dataset and its segmentation. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 140–145 (2011)

    Google Scholar 

  21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)

    Article  Google Scholar 

  22. Obaidullah, S.M., Das, N., Roy, K.: Gabor filter based technique for offline indic script identification from handwritten document images. In: IEEE International Conference on Devices, Circuits and Communication (ICDCCom 2014), Ranchi, India, pp. 1–5. doi:10.1109/ICDCCom.2014.7024723

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk. Md. Obaidullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Obaidullah, S.M., Halder, C., Das, N., Roy, K. (2016). An Approach for Automatic Indic Script Identification from Handwritten Document Images. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds) Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, vol 396. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2653-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2653-6_3

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2651-2

  • Online ISBN: 978-81-322-2653-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics