Nothing Special   »   [go: up one dir, main page]

Skip to main content

Psychophysical Dimensions of Material Perception and Methods to Specify Textural Space

  • Chapter
  • First Online:
Pervasive Haptics

Abstract

This chapter explains the five types of perceptual dimensions in tactile perception of materials: namely, coarse and fine roughness, softness (hardness), warmness (coldness), and friction percepts. How these dimensions are specified is discussed, and the perceptual mechanisms of each dimension are outlined. Furthermore, experimental and analytical methods to specify these perceptual dimensions are introduced. Primarily, two types of analyses, factor analysis and multidimensional scaling, are described with appropriate experiments for data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackerley, R., Saar, K., McGlone, F., Wasling, H.B.: Quantifying the sensory and emotional perception of touch: Differences between glabrous and hairy skin. Front. Behav. Neurosci. 8(34) (2014). doi:10.3389/fnbeh. 2014.00034

    Google Scholar 

  2. Ballesteros, S., Heller, M.A.: Haptic object identification. In: Grunwald, M. (ed.) Human Haptic Perception: Basics and Applications, pp. 212–213. Birkhauser, Basel (2008)

    Google Scholar 

  3. Ballesteros, S., Reales, J.M., Ponce de León, L., García, B.: The perception of ecological textures by touch: does the perceptual space change under bimodal visual and haptic exploration. In: Proceedings of IEEE World Haptics Conference, Pisa, pp. 635–638 (2005)

    Google Scholar 

  4. Baumgartner, E., Wiebel, C.B., Gegenfurtner, K.R.: Visual and haptic representations of material properties. Multisens. Res. 26, 429–455 (2013)

    Article  Google Scholar 

  5. Bensmaïa, S.J.: Texture from touch. Scholarpedia 4(8), 7956 (2009)

    Article  Google Scholar 

  6. Bensmaïa, S.J., Hollins, M.: The vibrations of texture. Somatosens. Motor Res. 20(1), 33–43 (2003)

    Article  Google Scholar 

  7. Bergmann Tiest, W.M.: Tactual perception of material properties. Vis. Res. 50(24), 2775–2782 (2010)

    Article  Google Scholar 

  8. Bergmann Tiest, W.M., Kappers, A.M.L.: Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychol. 121(1), 1–20 (2006)

    Article  Google Scholar 

  9. Bergmann Tiest, W.M., Kappers, A.M.L.: Kinaesthetic and cutaneous contributions to the perception of compressibility. In: Ferre, M. (ed.) Haptics: Perception, Devices and Scenarios. Lecture Notes in Computer Science, vol. 5024, pp. 255–264. Springer, Berlin/New York (2008)

    Chapter  Google Scholar 

  10. Bergmann Tiest, W.M., Kappers, A.M.L.: Cues for haptic perception of compliance. IEEE Trans. Haptics 2(4), 189–199 (2009)

    Article  Google Scholar 

  11. Bicchi, A., Schilingo, E.P., De Rossi, D.: Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans. Robot. Autom. 16(5), 496–504 (2000)

    Article  Google Scholar 

  12. Blake, D.T., Hsiao, S.S., Johnson, K.O.: Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J. Neurosci. 17(19), 7480–7489 (1997)

    Google Scholar 

  13. Brown, A.: Somatic sensation: peripheral aspects. In: Patton, H.D., Fuchs, A.F., Hille, B., Scher, A.M., and Steiner, R. (eds.) Textbook of Physiology, pp. 298–313. Saunders, Philadelphia (1989)

    Google Scholar 

  14. Cascio, C.J., Sathian, K.: Temporal cues contribute to tactile perception of roughness. J. Neurosci. 21(14), 5289–5296 (2001)

    Google Scholar 

  15. Chen, X., Barnes, C.J., Childs, T.H.C., Henson, B., Shao, F.: Materials’ tactile testing and characterization for consumer products’ affective packaging design. Mater. Des. 30, 4299–4310 (2009)

    Article  Google Scholar 

  16. Clarke, F.R.: Constant ratio rule for confusion matrices in speech communication. J. Acoust. Soc. Am. 29(6), 751–720 (1957)

    Google Scholar 

  17. Clarke, F.R., Anderson, C.D.: Further test of the constant ratio rule in speech communication. J. Acoust. Soc. Am. 29(12), 1318–1230 (1957)

    Article  Google Scholar 

  18. Connor, C.E., Hsiao, S.S., Phillips, J.R., Johnson, K.O.: Tactile roughness: neural codes that account for psychophysical magnitude estimates. J. Neurosci. 10(12), 3823–3836 (1990)

    Google Scholar 

  19. Darian-Smith, I.: Thermal sensibility. In: Brookhart, J.M., Mountcastle, V.B., Darian-Smith, I., Geiger, S.R. (eds.) Handbook of Physiology: The Nervous System, pp. 879–913. American Physiological Society, Bethesda (1984)

    Google Scholar 

  20. Ekman, G., Hosman, J., Lindström, B.: Roughness, smoothness, and preference: a study of quantitative relations in individual subjects. J. Exp. Psychol. 70(1), 18–26 (1965)

    Article  Google Scholar 

  21. Fagiani, R., Massi, F., Chatelet, E., Berthier, Y., Akay, A.: Tactile perception by friction induced vibrations. Tribol. Int. 44, 1100–1110 (2011)

    Article  Google Scholar 

  22. Fowler, C., Sitzoglou, K., Ali, Z., Halonen, P.: The conduction velocities of peripheral nerve fibres conveying sensations of warming and cooling. J. Neurol. Neurosurg. Psychiatr. 51, 1164–1170 (1988)

    Article  Google Scholar 

  23. Fujita, K., Ohmori, H.: A new softness display interface by dynamic fingertip contact area control. In: Proceedings of 5th World Multiconference on Systemics, Cybernetics, and Informatics, Orlando, pp. 78–82 (2001)

    Google Scholar 

  24. Gescheider, G.A., Bolanowski, S.J., Greenfield, T.G., Brunette, K.E.: Perception of the tactile texture of raised-dot patterns: a multidimensional analysis. Somatosens. Mot. Res. 22(3), 127–140 (2005)

    Article  Google Scholar 

  25. Green, B.: Localization of thermal sensation: an illusion and synthetic heat. Percept. Psychophys. 22, 331–337 (1977)

    Article  Google Scholar 

  26. Guest, S., Dessirier, J.M., Mehrabyan, A., McGlone, F., Essick, G., Gescheider, G., Fontana, A., Xiong, R., Ackerley, R., Blot, K.: The development and validation of sensory and emotional scales of touch perception. Atten. Percept. Psychophys. 73, 531–550 (2011)

    Article  Google Scholar 

  27. Guest, S., Mehrabyan, A., Essick, G., Phillips, N., Hopkinson, A., Mcglone, F.: Physics and tactile perception of fluid-covered surfaces. J. Texture Stud. 43(1), 77–93 (2012)

    Article  Google Scholar 

  28. Ho, H.N., Jones, L.: Contribution of thermal cues to material discrimination and localization. Percept. Psychophys. 68, 118–128 (2006)

    Article  Google Scholar 

  29. Ho, H.N., Watanabe, J., Ando, H., Kashino, M.: Mechanisms underlying referral of thermal sensations to sites of tactile stimulation. J. Neurosci. 31(1), 208–213 (2011)

    Article  Google Scholar 

  30. Hollins, M., Bensmaïa, S.J., Karlof, K., Young, F.: Individual differences in perceptual space for tactile textures: evidence from multidimensional scaling. Percept. Psychophys. 62(8), 1534–1544 (2000)

    Article  Google Scholar 

  31. Hollins, M., Bensmaiä, S.J., Washburn, S.: Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures. Somatosens. Mot. Res. 18(4), 253–262 (2001)

    Article  Google Scholar 

  32. Hollins, M., Faldowski, R., Rao, S., Young, F.: Perceptual dimensions of tactile surface texture: a multidimensional scaling analysis. Percept. Psychophys. 54(6), 697–705 (1993)

    Article  Google Scholar 

  33. Hollins, M., Fox, A., Bishop, C.: Imposed vibration influences perceived tactile smoothness. Perception 29(12), 1455–1465 (2000)

    Article  Google Scholar 

  34. Hollins, M., Rinser, S.R.: Evidence for the duplex theory of tactile texture perception. Atten. Percept. Psychophys. 62(4), 695–705 (2000)

    Article  Google Scholar 

  35. Howorth, W.S., Oliver, P.H.: The application of multiple factor analysis to the assessment of fabric hand. J. Text. Inst. Trans. 49(11), T540–T553 (1958)

    Article  Google Scholar 

  36. Jones, L., Ho, H.N.: Warm or cool, large or small? The challenge of thermal displays. IEEE Trans. Haptics 1(1), 53–70 (2008)

    Article  Google Scholar 

  37. Kimura, F., Yamamoto, A., Higuchi, T.: Development of a 2-DOF softness feeling display for tactile tele-presentation of deformable surfaces. In: Proceedings of IEEE International Conference on Robotics and Automation, Kobe, pp. 1822–1827 (2010)

    Google Scholar 

  38. Klatzky, R.L., Pawluk, D., Peer, A.: Haptic perception of material properties and implications for applications. Proc. IEEE 101(9), 2081–2092 (2013)

    Google Scholar 

  39. Konyo, M., Yamada, H., Okamoto, S., Tadokoro, S.: Alternative display of friction represented by tactile stimulation without tangential force. In: Ferre, M. (ed.) Haptics: Perception, Devices and Scenarios. Lecture Notes in Computer Science, vol. 5024, pp. 619–629. Springer, Berlin/New York (2008)

    Chapter  Google Scholar 

  40. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kruskal, J.B.: Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kuchenbecker, K., Fiene, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Trans. Vis. Comput. Graphics 12(2), 219–230 (2006)

    Article  Google Scholar 

  43. Lederman, S.J.: Tactile roughness of grooved surfaces: the touching process and effects of macro-and microsurface structure. Percept. Psychophys. 16(2), 385–395 (1974)

    Article  Google Scholar 

  44. Lederman, S.J., Thorne, G., Jones, B.: Perception of texture by vision and touch: multidimensionality and intersensory integration. J. Exp. Psychol.: Human Percept. Perform. 12, 169–180 (1986)

    Google Scholar 

  45. Luce, R.D.: Detection and recognition. In: Luce, R.D., Bush, R.R., Galanter, E. (eds.) Handbook of Mathematical Psychology, pp. 103–189. Wiley, New York (1963)

    Google Scholar 

  46. Luce, R.D.: Individual Choice Behavior: A Theoretical Analysis. Dover Publications, Mineola (2005)

    Book  MATH  Google Scholar 

  47. Lyne, M.B., Whiteman, A., Donderi, D.C.: Multidimensional scaling of tissue quality. Pulp Pap. Can. 85(10), 43–50 (1984)

    Google Scholar 

  48. Matsui, K., Okamoto, S., Yamada, Y.: Relative contribution ratios of skin and proprioceptive sensations in perception of force applied to fingertip. IEEE Trans. Haptics 7(1), 78–85 (2014)

    Article  Google Scholar 

  49. Matsuoka, T., Kanai, H., Tsuji, H., Shinya, T., Nishimatsu, T.: Predicting texture image of covering fabric for car seat by physical properties. J. Text. Eng. 54(3), 63–74 (2008)

    Article  Google Scholar 

  50. Meftah, E.M., Belingard, L., Chapman, C.E.: Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Exp. Brain Res. 132(3), 351–361 (2000)

    Article  Google Scholar 

  51. Miyaoka, T., Mano, T., Ohka, M.: Mechanisms of fine-surface-texture discrimination in human tactile sensation. J. Acoust. Soc. Am. 105, 2485–2492 (1999)

    Article  Google Scholar 

  52. Nagano, H., Okamoto, S., Yamada, Y.: Haptic invitation of textures: perceptually prominent properties of materials determine human touch motions. IEEE Trans. Haptics 7(3), 345–355 (2014)

    Article  Google Scholar 

  53. Nagano, H., Okamoto, S., Yamada, Y.: Semantically layered structure of tactile textures. In: Auvray, M., Duriez, C. (eds.) Haptics: Neuroscience, Devices, Modeling, and Applications, Part I. Lecture Notes in Computer Science, vol. 8618, pp. 3–9. Springer, Berlin/Heidelberg (2014)

    Google Scholar 

  54. Nonomura, Y., Fujii, T., Arashi, Y., Miura, T., Maeno, T., Tashiro, K., Kamikawa, Y., Monchi, R.: Tactile impression and friction of water on human skin. Colloids Surf. B: Biointerfaces 69, 264–267 (2009)

    Article  Google Scholar 

  55. Okamoto, S., Nagano, H., Yamada, Y.: Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 6(1), 81–93 (2013)

    Article  Google Scholar 

  56. Okamura, A.M., Cutkosky, M.R., Dennerlein, J.T.: Reality-based models for vibration feedback in virtual environments. IEEE/ASME Trans. Mechatron. 6(3), 245–252 (2001)

    Article  Google Scholar 

  57. Patapoutian, A., Peier, A., Story, G., Viswanath, V.: ThermoTRPs and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4, 529–539 (2003)

    Article  Google Scholar 

  58. Picard, D., Dacremont, C., Valentin, D., Giboreau, A.: Perceptual dimensions of tactile textures. Acta Psychol. 114(2), 165–184 (2003)

    Article  Google Scholar 

  59. Picard, D., Dacremont, G., Valentin, D., Giboreau, A.: About the salient perceptual dimensions of tactile textures space. In: S. Ballesteros, M.A. Heller (eds.) Touch, Blindness, and Neuroscience, pp. 165–174. UNED, Madrid (2004)

    Google Scholar 

  60. Provancher, W.R., Sylvester, N.D.: Fingerpad skin stretch increases the perception of virtual friction. IEEE Trans. Haptics 2(4), 212–223 (2009)

    Article  Google Scholar 

  61. Schepers, R.J., Ringkamp, M.: Thermoreceptors and thermosensitive afferents. Neurosci. Biobehav. Rev. 34, 177–184 (2010)

    Article  Google Scholar 

  62. Scilingo, E.P., Bianchi, M., Grioli, G., Bicchi, A.: Rendering softness: integration of kinesthetic and cutaneous information in a haptic device. IEEE Trans. Haptics 3(2), 109–118 (2010)

    Article  Google Scholar 

  63. Shirado, H., Maeno, T.: Modeling of texture perception mechanism for tactile display and sensor. J. Virtual Real. Soc. Jpn. 9(3), 235–240 (2004)

    Google Scholar 

  64. Skedung, L., Danerlöv, K., Olofsson, U., Johannesson, C.M., Aikala, M., Kettle, J., Arvidsson, M., Berglund, B., Rutland, M.W.: Tactile perception: finger friction, surface roughness and perceived coarseness. Tribol. Int. 44, 505–512 (2011)

    Article  Google Scholar 

  65. Smith, A.M., Basile, G.: Roughness of simulated surfaces examined with a haptic tool: effects of spatial period, friction, and resistance amplitude. Exp. Brain Res. 202(1), 33–43 (2010)

    Article  Google Scholar 

  66. Smith, A.M., Chapman, C.E., Deslandes, M., Langlais, J.S., Thibodeau, M.P.: Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res. 144(2), 211–223 (2002)

    Article  Google Scholar 

  67. Soufflet, I., Calonnier, M., Dacremont, C.: A comparison between industrial experts’ and novices’ haptic perceptual organization: a tool to identify descriptors of the handle of fabrics. Food Qual. Prefer. 15, 689–699 (2004)

    Article  Google Scholar 

  68. Spray, D.: Cutaneous temperature receptors. Ann. Rev. Physiol. 48, 625–638 (1986)

    Article  Google Scholar 

  69. Srinivasan, M.A., LaMotte, R.H.: Tactual discrimination of softness. J. Neurophysiol. 73(1), 88–101 (1995)

    Google Scholar 

  70. Stevens, J.: Thermal sensibility. In: Heller, M.A., Schiff, W. (eds.) The Psychology of Touch, pp. 61–90. Lawrence Erlbaum, Mahwah (1991)

    Google Scholar 

  71. Stevens, J., Choo, K.: Temperature sensitivity of the body surface over the life span. Somatosen. Mot. Res. 15, 13–28 (1998)

    Article  Google Scholar 

  72. Summers, I.R., Irwin, R.J., Brady, A.C.: Haptic discrimination of paper. In: Grunwald, M. (ed.) Human Haptic Perception: Basics and Applications, pp. 525–535. Birkhäuser, Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  73. Tamura, K., Oyama, O., Yamada, H.: Study on feeling evaluation applied to material recognition. In: Proceedings of JSME Dynamics and Design Conference, Tokyo, no. 709 (2000)

    Google Scholar 

  74. Tanaka, Y., Sukigara, S.: Evaluation of “shittori” characteristic for fabrics. J. Text. Eng. 54(3), 75–81 (2008)

    Article  Google Scholar 

  75. Tanaka, Y., Tanaka, M., Chonan, S.: Development of a sensor system for measuring tactile sensation. In: Proceedings of the 2006 IEEE Sensors, Houston, pp. 554–557 (2006)

    Google Scholar 

  76. Taylor, M.M., Lederman, S.J.: Tactile roughness of grooved surfaces: a model and the effect of friction. Percept. Psychophys. 17(1), 23–36 (1975)

    Article  Google Scholar 

  77. Terekhov, A.V., Hayward, V.: Minimal adhesion surface area in tangentially loaded digital contacts. J. Biomech. 44(13), 2508–2510 (2011)

    Article  Google Scholar 

  78. Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika 17, 401–419 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  79. Townsend, J.T.: Alphabetic confusion: a test of models for individuals. Percept. Psychophys. 9, 449–454 (1971)

    Article  Google Scholar 

  80. Townsend, J.T., Landon, D.E.: An experimental and theoretical investigation of the constant-ratio rule and other models of visual letter confusion. J. Math. Psychol. 25, 119–162 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  81. Yoshida, M.: Dimensions of tactual impressions (1). Jpn. Psycholog. Res. 10(3), 123–137 (1968)

    Google Scholar 

  82. Yoshioka, T., Bensmaïa, S.J., Craig, J.C., Hsiao, S.S.: Texture perception through direct and indirect touch: an analysis of perceptual space for tactile textures in two modes of exploration. Somatosens. Mot. Res. 24(1–2), 53–70 (2007)

    Article  Google Scholar 

  83. Yoshioka, T., Gibb, B., Dorsch, A., Hsiao, S.S., Johnson, K.O.: Neural coding mechanisms underlying perceived roughness of finely textured surfaces. J. Neurosci. 21(17), 6905–6916 (2001)

    Google Scholar 

  84. Zigler, M.J.: An experimental study of the perception of stickiness. Am. J. Psychol. 34(1), 73–84 (1923)

    Article  Google Scholar 

Download references

Acknowledgements

The content of this chapter was in part supported by MEXT Kakenhi Shitsukan #23135514 and #25135717 and MIC SCOPE #142106003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Okamoto, S., Nagano, H., Ho, HN. (2016). Psychophysical Dimensions of Material Perception and Methods to Specify Textural Space. In: Kajimoto, H., Saga, S., Konyo, M. (eds) Pervasive Haptics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55772-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55772-2_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55771-5

  • Online ISBN: 978-4-431-55772-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics