Nothing Special   »   [go: up one dir, main page]

Skip to main content

Path Problems in Graphs

  • Chapter
Computational Graph Theory

Part of the book series: Computing Supplementum ((COMPUTING,volume 7))

  • 447 Accesses

Abstract

Path Problems in Graphs. A large variety of problems in computer science can be viewed from a common viewpoint as instances of “algebraic” path problems. Among them are of course path problems in graphs such as the shortest path problem or problems of finding optimal paths with respect to more generally defined objective functions; but also graph problems whose formulations do not directly involve the concept of a path, such as finding all bridges and articulation points of a graph. Moreover, there are even problems which seemingly have nothing to do with graphs, such as the solution of systems of linear equations, partial differentiation, or the determination of the regular expression describing the language accepted by a finite automaton.

We describe the relation among these problems and their common algebraic foundation.

We survey algorithms for solving them: vertex elimination algorithms such as Gauß-Jordan elimination; and iterative algorithms such as the “classical” Jacobi and Gauß-Seidel iteration.

AMS 1980 mathematics subject classification (1985 revision): 68–01, (68E10, 68R10, 68Q, 05C, 65-01, 65F05, 65F10, 16A78, 90C35, 90C50).

Zusammenfassung

Wegeprobleme in Graphe. Es gibt eine Vielfalt von Problemen, die sich als “algebraische” Wege-Probleme interpretieren lassen. Dazu gehören natürlich Wege-Probleme auf Graphen wie das gewöhnliche kürzeste-Wege-Problem oder das Bestimmen bester Wege unter allgemeineren Optimalltätskriterien, aber auch Probleme, deren Definition nur indirekt mit Wegen zu tun hat, wie das Bestimmen aller Brücken und Artikulationsknoten eines Graphen. Sogar einige Probleme, die anscheinend überhaupt nichts mit Graphen zu tun haben, lassen sich als algebraische Wege-Probleme behandeln: Man kann z. B. lineare Gleichungssysteme lösen, auf schnellem Weg alle partiellen Ableitungen eines Ausdrucks berechnen, oder einen regulären Ausdruck für die formale Sprache bestimmen, die ein endlicher Automat akzeptiert.

In dieser Überblicksarbeit wird einerseits dargestellt, wie man alle diese Problem unter einen Hut bringt, indem man eine gemeinsame algebraische Formulierung für sie findet; andererseits werden verschiedene Lösungsalgorithmen besprochen: Knoteneliminations-Algorithmen (z. B. Gauß-Jordan-Elimination) und iterative Algorithmen (wie die klassischen Iterationsverfahren von Jacobi und Gauß-Seidel).

This work was written while the author was at the Freie Universitat Berlin, Fachbereich Mathematik. It was partially supported by the ESPRIT II Basic Research Action Program of the EC under contract no. 3075 (project ALCOM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. K. Abdali and B. D. Saunders, Transitive closure and related semiring properties via eliminants, Theoret. Comput. Sci. 40 (1985), 257–274.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading (Mass.) etc. 1974.

    MATH  Google Scholar 

  3. W. Baur and V. Strassen, The complexity of partial derivatives, Theoret. Comput. Sci. 22 (1983), 317–330.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. A. Carré, Graphs and Networks, The Clarendon Press, Oxford University Press, Oxford 1979.

    MATH  Google Scholar 

  5. G. N. Frederickson and D. B. Johnson, The complexity of selection and ranking in X + Y and matrices with sorted columns, J. Comput. Syst. Sci. 24 (1982), 197–208.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Gondran and M. inoux, Graphes gorithmes, Editions Eyrolles, Paris 1979; English translation: Graphs and Algorithms, Wiley, Chichester etc. 1984.

    Google Scholar 

  7. M. Iri, Simultaneous computation of functions, partial derivatives, and estimates of rounding errors, Japan J. Appl. Math. 1 (1984), 223–252.

    MathSciNet  MATH  Google Scholar 

  8. M. Iri and K. Kubota, Methods of fast automatic differentiation and applications, Research Memorandum RMI87–02, University of Tokyo, Faculty of Engineering, Hongo 7–3-1, Bunkyo-ku, Tokyo, July 1987.

    Google Scholar 

  9. D. J. Lehmann, Algebraic structures for transitive closure, Theoret. Comput. Sci. 4 (1977), 59–66.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested dissection, SLAM J. Numer. Anal. 16 (1979), 346–358.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979), 177–189.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Mahr, Iteration and summability in semirings, in: R. E. Burkard, R. A. Cuninghame-Green, U. Zimmermann (eds.), Algebraic and Combinatorial Methods in Operations Research (Proc. Workshop on Algebraic Structures in Operations Research, Bad Honnef, Germany, April 1982), Annals of Discrete Mathematics 19, North-Holland, Amsterdam 1984, pp. 229–256.

    Google Scholar 

  13. G. Rote, A systolic array for the algebraic path problem, Computing 34 (1985), 191–219.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. W. Sawyer, Jr., Fast partial differentiation by computer with an application to categorical data analysis, The American Statistician 38 (1984), 300–308.

    Article  MATH  Google Scholar 

  15. R. E. Tarjan, A unified approach to path problems, J. Assoc. Comput. Mach. 28 (1981), 577–593.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. E. Tarjan, Fast algorithms for solving path problems, J. Assoc. Comput. Mach. 28 (1981), 594–614.

    Article  MathSciNet  MATH  Google Scholar 

  17. U. Zimmermann, Linear and combinatorial optimization in order algebraic structures, Annals of Discrete Mathematics 10, North-Holland, Amsterdam 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this chapter

Cite this chapter

Rote, G. (1990). Path Problems in Graphs. In: Tinhofer, G., Mayr, E., Noltemeier, H., Syslo, M.M. (eds) Computational Graph Theory. Computing Supplementum, vol 7. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9076-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9076-0_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82177-0

  • Online ISBN: 978-3-7091-9076-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics