Abstract
Massive amounts of health data have been created together with the advent of computer technologies and next generation sequencing technologies. Analytical techniques can significantly aid in the processing, integration and interpretation of the complex data. Visual analytics field has been rapidly evolving together with the advancement in automated analysis methods such as data mining, machine learning and statistics, visualization, and immersive technologies. Although automated analysis processes greatly support the decision making, conservative domains such as medicine, banking, and insurance need trusts on machine learning models. Explainable artificial intelligence could open the black boxes of the machine learning models to improve the trusts for decision makers. Immersive technologies allow the users to engage naturally with the blended reality in where they can look the information in different angles in addition to traditional screens. This chapter reviews and discusses the intelligent visualization, artificial intelligence and immersive technologies in health domain. We also illustrate the ideas with various case studies in genomic data visual analytics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, J., Lai, J., Wood, D.L., Sajjanhar, A., Wang, C., Tevz, G., Lehman, M.L., Nelson, C.C.: RNASeqBrowser: a genome browser for simultaneous visualization of raw strand specific RNAseq reads and UCSC genome browser custom tracks. BMC Genom. 16, 145 (2015). https://doi.org/10.1186/s12864-015-1346-2
Arya, A., Nowlan, N., Sauriol, N.: Data-driven framework for an online 3D immersive environment for educational applications. In: Proceedings of the International Conference on Education and New Learning Technologies, pp. 4726–4736 (2010)
Bhavnani, S., Ganesan, A., Hall, T., Maslowski, E., Eichinger, F., Martini, S., Saxman, P., Bellala, G., Kretzler, M.: Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations. BMC Res. Notes 3(1), 296 (2010). https://doi.org/10.1186/1756-0500-3-296
Borgo, R., Kehrer, J., Chung, D.H., Maguire, E., Laramee, R.S., Hauser, H., Ward, M., Chen, M.: Glyph-based visualization: foundations, design guidelines, techniques and applications. In: Eurographics (STARs), pp. 39–63 (2013)
Boudreaux, E.D., Waring, M.E., Hayes, R.B., Sadasivam, R.S., Mullen, S., Pagoto, S.: Evaluating and selecting mobile health apps: strategies for healthcare providers and healthcare organizations. Transl. Behav. Med. 4(4), 363–371 (2014). https://doi.org/10.1007/s13142-014-0293-9
Breiman, L.: Radom forests. Mach. Learn. 45, 5–32 (2001)
Calì, C., Baghabra, J., Boges, D.J., Holst, G.R., Kreshuk, A., Hamprecht, F.A., Srinivasan, M., Lehväslaiho, H., Magistretti, P.J.: Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues. J. Comp. Neurol. 524(1), 23–38 (2016). https://doi.org/10.1002/cne.23852
Camilleri, V., de Freitas, S., Montebello, M., McDonagh-Smith, P.: A case study inside virtual worlds: use of analytics for immersive spaces (2013). https://doi.org/10.1145/2460296.2460341
Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in information visualization: using vision to think. The Morgan Kaufmann series in interactive technologies. Morgan Kaufmann Publishers, an Francisco, California (1999)
Chang, Y., Peng Xu, W., Wang, L.: Research on 3D Visualization of Underground Antique Tomb Based on Augmented Reality, vol. 336–338 (2013). https://doi.org/10.4028/www.scientific.net/AMM.336-338.1434
Chelaru, F., Smith, L., Goldstein, N., Bravo, H.C.: Epiviz: interactive visual analytics for functional genomics data. Nat. Methods 11(9), 938–940 (2014). https://doi.org/10.1038/nmeth.3038
Claudia, E., Peter, E., Bernd, E., Katrin, E., Torsten, E.: Interactive 3D visualization of structural changes in the brain of a person with corticobasal syndrome. Front. Neuroinformatics 8 (2014). https://doi.org/10.3389/fninf.2014.00042
David, B.D., Clifford, A.W., Gibson, J.D., John, M.B., Max, W.: Augmented reality: advances in diagnostic imaging. Multimodal Technol. Interact. 1(4), 29 (2017). https://doi.org/10.3390/mti1040029
Dockx, K., Bekkers, E.M.J., Van den Bergh, V., Ginis, P., Rochester, L., Hausdorff, J.M., Mirelman, A., Nieuwboer, A.: Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst. Rev. 12 (2016). https://doi.org/10.1002/14651858.cd010760.pub2
Fuchs, R., Waser, J., Groller, M.E.: Visual human + machine learning. IEEE Trans. Vis. Comput. Graph 15(6), 1327–1334 (2009). https://doi.org/10.1109/TVCG.2009.199
García-Hernández, R.J., Anthes, C., Wiedemann, M., Kranzlmüller, D.: Perspectives for using virtual reality to extend visual data mining in information visualization. In: 2016 IEEE Aerospace Conference, 5–12, pp. 1–11 (2016). https://doi.org/10.1109/aero.2016.7500608
Gold, J.I., Belmont, K.A., Thomas, D.A.: The neurobiology of virtual reality pain attenuation. Cyberpsychology Behav. Impact Internet, Multimed. Virtual Real. Behav. Soc. 10(4), 536 (2007). https://doi.org/10.1089/cpb.2007.9993
Goldman, M., Craft, B., Swatloski, T., Cline, M., Morozova, O., Diekhans, M., Haussler, D., Zhu, J.: The UCSC cancer genomics browser: update 2015. Nucleic. Acids Res. 43, D812–817 (2015). https://doi.org/10.1093/nar/gku1073
Golestan Hashemi, F.S., Razi Ismail, M., Rafii Yusop, M., Golestan Hashemi, M.S., Nadimi Shahraki, M.H., Rastegari, H., Miah, G., Aslani, F.: Intelligent mining of large-scale bio-data: bioinformatics applications. Biotechnol. Biotechnol. Equip. 32(1), 10–29 (2017). https://doi.org/10.1080/13102818.2017.1364977
Green, T.M., Ribarsky, W., Fisher, B.: Visual analytics for complex concepts using a human cognition model. In: 2008 IEEE Symposium on Visual Analytics Science and Technology, vol. 19–24, pp. 91–98 (2008). https://doi.org/10.1109/vast.2008.4677361
Joseph, A.C., David, S.W.: Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2, 59–78 (2006)
Keahey, T.A.: Using visualization to understand big data. Adv. Vis. (2013)
Keefe, J.F., Huling, A.D., Coggins, J.M., Keefe, F.D., Rosenthal, M.Z., Herr, R.N., Hoffman, G.H.: Virtual reality for persistent pain: a new direction for behavioral pain management. Pain 153(11), 2163–2166 (2012). https://doi.org/10.1016/j.pain.2012.05.030
Kiper, P., Szczudlik, A., Agostini, M., Opara, J., Nowobilski, R., Ventura, L., Tonin, P., Turolla, A.: Virtual reality for upper limb rehabilitation in subacute and chronic stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 99(5), 834–842.e834 (2018). https://doi.org/10.1016/j.apmr.2018.01.023
Krisa, D., Tailor, S.I.: Data visualization in health care: optimizing the utility of claims data through visual analysis (2014)
Lau, C.W., Nguyen, Q.V., Qu, Z., Simoff, S., Catchpoole, D.: Immersive intelligence genomic data visualisation. Paper Presented at the ACM (2019)
Laver, K.E., Lange, B., George, S., Deutsch, J.E., Saposnik, G., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Database of Syst. Rev. 11 (2017). https://doi.org/10.1002/14651858.cd008349.pub4
Leung, M.K.K., Delong, A., Alipanahi, B., Frey, B.J.: Machine learning in genomic medicine: a review of computational problems and data sets. Proc. IEEE 104(1), 176–197 (2016). https://doi.org/10.1109/jproc.2015.2494198
Lex, A., Streit, M., Kruijff, E., Schmalstieg, D.: Caleydo: design and evaluation of a visual analysis framework for gene expression data in its biological context. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), vol. 2–5, pp. 57–64 (2010). https://doi.org/10.1109/pacificvis.2010.5429609
Lin, Q., Xu, Z., Li, B., Baucom, R., Poulose, B., Landman, B.A., Bodenheimer, R.E.: Immersive virtual reality for visualization of abdominal CT. In: Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment. International Society for Optics and Photonics, p. 867317 (2013)
Llobera, J., González-Franco, M., Perez-Marcos, D., Valls-Solé, J., Slater, M., Sanchez-Vives, M.: Virtual reality for assessment of patients suffering chronic pain: a case study. Exp. Brain Res. 225(1), 105–117 (2013). https://doi.org/10.1007/s00221-012-3352-9
Luboschik, M., Berger, P., Staadt, O.: On Spatial Perception Issues in Augmented Reality Based Immersive Analytics (2016). https://doi.org/10.1145/3009939.3009947
Maani, C.V., Hoffman, H.G., Morrow, M., Maiers, A., Gaylord, K., McGhee, L.L., Desocio, P.A.: Virtual reality pain control during burn wound debridement of combat-related burn injuries using robot-like arm mounted VR goggles. J. Trauma: Inj. Infect. Crit. Care 71(1 supplement), S125–S130 (2011). https://doi.org/10.1097/TA.0b013e31822192e2
Matte-Tailliez, O., Toffano-Nioche, C., Ferey, N., Kepes, F., Gherbi, R.: Immersive visualization for genome exploration and analysis. In: 2006 2nd International Conference on Information and Communication Technologies, vol. 24–28, pp. 3510–3515 (2006). https://doi.org/10.1109/ictta.2006.1684982
Mills, M.: Artificial Intelligence in Law: The State of Play 2016 Thomson Reuters S031401/3–16 (2016)
Moran, A., Gadepally, V., Hubbell, M., Kepner, J.: Improving big data visual analytics with interactive virtual reality (2015). https://doi.org/10.1109/HPEC.2015.7322473
Müller, C., Krone, M., Huber, M., Biener, V., Herr, D., Koch, S., Reina, G., Weiskopf, D., Ertl, T.: Interactive molecular graphics for augmented reality using Hololens. J. Integr. Bioinform. 15(2). https://doi.org/10.1515/jib-2018-0005
Natalia Andrienko, G.A.: Intelligent visualisation and information presentation for civil crisis management. Trans. GIS 11(6), 11 (2007). https://doi.org/10.1111/j.1467-9671.2007.01078.x
Nguyen, H., Marendy, P., Engelke, U.: Collaborative Framework Design for Immersive Analytics (2016). https://doi.org/10.1109/BDVA.2016.7787044
Nguyen, Q.V., Alzamora, P., Ho, N., Huang, M.L., Simoff, S., Catchpoole, D.: Unlocking the complexity of genomic data of RMS patients through visual analytics. In: Paper presented at the 2012 International Conference on Computerized Healthcare, pp. 17–18. Hong Kong (2012)
Nguyen, Q.V., Gleeson, A., Ho, N., Huang, M.L., Simoff, S., Catchpoole, D.: Visual analytics of clinical and genetic datasets of acute lymphoblastic leukaemia. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) Neural Information Processing: 18th International Conference, ICONIP 2011, pp. 13–17. Shanghai, China. Proceedings, Part I. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 113–120 (2011). https://doi.org/10.1007/978-3-642-24955-6_14
Nguyen, Q.V., Khalifa, N.H., Alzamora, P., Gleeson, A., Catchpoole, D., Kennedy, P.J., Simoff, S.: Visual analytics of complex genomics data to guide effective treatment decisions. J. Imaging 2(4), 29 (2016). UNSP 2910.3390/jimaging2040029
Nguyen, Q.V., Qian, Y., Huang, M.L., Zhang, J.W.: TabuVis: a tool for visual analytics multidimensional datasets. Sci. China-Infr. Sci. 56(5), 1–12 (2013). ARTN 05210510.1007/s11432-013-4870-1
Nguyen, Q.V., Nelmes, G., Huang, M.L., Simoff, S., Catchpoole, D.: Interactive visualization for patient-to-patient comparison. Genomics Inf. 12(1), 21–34 (2014). https://doi.org/10.5808/GI.2014.12.1.21
Nilsson, N.J.: The Quest for Artifical Intelligence: A History of Ideas and Achievements (2009)
Olshannikova, E., Ometov, A., Koucheryavy, Y., Olsson, T.: Visualizing big data with augmented and virtual reality: challenges and research agenda. J. Big Data 2(1) (2015). https://doi.org/10.1186/s40537-015-0031-2
Patrick, H., Wen, P., SriSatish, A.: Ideas on interpreting machine learning. O’Reilly (2017)
Pavlopoulos, G.A., Malliarakis, D., Papanikolaou, N., Theodosiou, T., Enright, A.J., Iliopoulos, I.: Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future. Gigascience 4, 38 (2015). https://doi.org/10.1186/s13742-015-0077-2
Perez-Llamas, C., Lopez-Bigas, N.: Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE 6(5), e19541 (2011). https://doi.org/10.1371/journal.pone.0019541
Polys, N., Mohammed, A., Iyer, J., Radics, P., Abidi, F., Arsenault, L., Rajamohan, S.: Immersive analytics: crossing the gulfs with high-performance visualization (2016). https://doi.org/10.1109/IMMERSIVE.2016.7932376
Qu, Z., Lau, C.W., Nguyen, Q.V., Zhou, Y., Catchpoole, D.R.: visual analytics of genomic and cancer data: a systematic review. Cancer Inform. 18, 1176935119835546 (2019)
Qu, Z., Zhou, Y., Nguyen, Q.V., Catchpoole, D.R.: Using visualization to illustrate machine learning models for genomic data. Paper Presented at the ACM (2019)
Ribeiro, M., Singh, S., Guestrin, C.: Why Should I Trust You? Explaining the Predictions of Any Classifier. arXivorg (2016)
Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P.: Integrative genomics viewer. Nat. Biotechnol. 29(1), 24–26 (2011). https://doi.org/10.1038/nbt.1754
Sennaar, K.: Machine Learning in Genomics—Current Efforts and Future Applications (2018). https://www.techemergence.com/machine-learning-in-genomics-applications/
Shan, Q., Doyle, T.E., Samavi, R., Al-Rei, M.: Augmented reality based brain tumor 3D visualization. In: 8th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2017), vol. 113, pp. 400–407 (2017). https://doi.org/10.1016/j.procs.2017.08.356
Shilling, C.: How Augmented Reality will Change Data Visualization (2017). http://blog.i2econsulting.com/how-augmented-reality-will-change-data-visualization/
Simpson, R.M., LaViola, J.J., Laidlaw, D.H., Forsberg, A.S., van Dam, A.: Immersive VR for scientific visualization: a progress report. IEEE Comput. Graphics Appl. 20(6), 26–52 (2000). https://doi.org/10.1109/38.888006
Slater, M., Sanchez-Vives, M.V.: Enhancing Our Lives with Immersive Virtual Reality 3(74) (2016). https://doi.org/10.3389/frobt.2016.00074
Stevens, E.A., Rodriguez, C.P.: Genomic medicine and targeted therapy for solid tumors 111 (2015). https://doi.org/10.1002/jso.23699
Tang, J., Liu, R., Zhang, Y.L., Liu, M.Z., Hu, Y.F., Shao, M.J., Zhu, L.J., Xin, H.W., Feng, G.W., Shang, W.J., Meng, X.G., Zhang, L.R., Ming, Y.Z., Zhang, W.: Application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients. Sci. Rep. 7, 42192 (2017). https://doi.org/10.1038/srep42192
Venson, J., Berni, J., Maia, C., Da Silva, A., D’Ornelas, M., Maciel, A.: Medical imaging VR: Can Immersive 3D Aid in Diagnosis? 02–04 (2016). https://doi.org/10.1145/2993369.2996333
Wachtel, M., Runge, T., Leuschner, I., Stegmaier, S., Koscielniak, E., Treuner, J., Odermatt, B., Behnke, S., Niggli, F., Schafer, B.: Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J. Clin. Oncol. 24(5), 816–822 (2006). https://doi.org/10.1200/JCO.2005.03.4934
Ware, C.: Information Visualization Perception for Design (2013)
Wei, L., Huang, X., Huang, M.L., Nguyen, Q.V.: Applying graph layout techniques to web information visualization and navigation. In: Paper Presented at the IEEE Int’l Conference on Computer Graphics, Imaging and Vision (CGIV07). Bangkok, Thailand, 13 Aug 2007
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer-Verlag GmbH Germany, part of Springer Nature
About this chapter
Cite this chapter
Qu, Z., Lau, C.W., Catchpoole, D.R., Simoff, S., Nguyen, Q.V. (2020). Intelligent and Immersive Visual Analytics of Health Data. In: Maglogiannis, I., Brahnam, S., Jain, L. (eds) Advanced Computational Intelligence in Healthcare-7. Studies in Computational Intelligence, vol 891. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61114-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-662-61114-2_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-61112-8
Online ISBN: 978-3-662-61114-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)