Abstract
We study a variant of intersection representations with unit balls: unit disks in the plane and unit intervals on the line. Given a planar graph and a bipartition of the edges of the graph into near and far edges, the goal is to represent the vertices of the graph by unit-size balls so that the balls for two adjacent vertices intersect if and only if the corresponding edge is near. We consider the problem in the plane and prove that it is NP-hard to decide whether such a representation exists for a given edge-partition. On the other hand, we show that series-parallel graphs (which include outerplanar graphs) admit such a representation with unit disks for any near/far bipartition of the edges. The unit-interval on the line variant is equivalent to threshold graph coloring, in which context it is known that there exist girth-3 planar graphs (even outerplanar graphs) that do not admit such coloring. We extend this result to girth-4 planar graphs. On the other hand, we show that all triangle-free outerplanar graphs and all planar graphs with maximum average degree less than 26/11 have such a coloring, via unit-interval intersection representation on the line. This gives a simple proof that all planar graphs with girth at least 13 have a unit-interval intersection representation on the line.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alam, M.J., Chaplick, S., Fijavž, G., Kaufmann, M., Kobourov, S.G., Pupyrev, S.: Threshold-coloring and unit-cube contact representation of graphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 26–37. Springer, Heidelberg (2013)
Alam, M.J., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J.: Happy edges: threshold-coloring of regular lattices. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 28–39. Springer, Heidelberg (2014)
Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R.: Coloring with no 2-colored P4. Electron. J. Combin. 11(1), R26 (2004)
Borodin, O., Kostochka, A., Nešetřil, J., Raspaud, A., Sopena, E.: On the maximum average degree and the oriented chromatic number of a graph. Dis. Math. 206(1), 77–89 (1999)
Bremner, D., Evans, W., Frati, F., Heyer, L., Kobourov, S.G., Lenhart, W.J., Liotta, G., Rappaport, D., Whitesides, S.H.: On representing graphs by touching cuboids. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg (2013)
Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. 9(1), 3–24 (1998)
Bu, Y., Cranston, D.W., Montassier, M., Raspaud, A., Wang, W.: Star coloring of sparse graphs. J. Graph. Theory 62(3), 201–219 (2009)
Duffin, R.: Topology of series-parallel networks. J. Math. Anal. Appl. 10, 303–318 (1965)
Eggleton, R., Erdös, P., Skilton, D.: Colouring the real line. J. Comb. Theory, Ser. B 39(1), 86–100 (1985)
Evans, W., Gansner, E.R., Kaufmann, M., Liotta, G., Meijer, H., Spillner, A.: Approximate proximity drawings. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 166–178. Springer, Heidelberg (2011)
Herrera de Fegueiredo, C.M., Meidanis, J., Picinin de Mello, C.: A linear-time algorithm for proper interval graph recognition. Inf. Process. Lett. 56(3), 179–184 (1995)
Ferrara, M., Kohayakawa, Y., Rödl, V.: Distance graphs on the integers. Comb. Probab. Comput. 14(1), 107–131 (2005)
Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969)
Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. J. Algorithms 19(3), 449–473 (1995)
Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12), 1497–1514 (1980)
Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Dis. App. Math. 28(1), 35–44 (1990)
Hliněnỳ, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Math. 229(1), 101–124 (2001)
Kleist, L., Rahman, B.: Unit contact representations of grid subgraphs with regular polytopes in 2D and 3D. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 137–148. Springer, Heidelberg (2014)
Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad hoc networks beyond unit disk graphs. Wireless Netw. 14(5), 715–729 (2008)
Liotta, G.: Proximity drawings. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. Chapman & Hall/CRC, Boca Raton (2007)
Mahadev, N.V., Peled, U.N.: Threshold Graphs and Related Topics. North Holland, Amsterdam (1995)
McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J. Comb. Theory, Ser. B 103(1), 114–143 (2013)
Thomassen, C.: Decomposing a planar graph into degenerate graphs. J. Comb. Theory, Ser. B 65(2), 305–314 (1995)
Timmons, C.: Star coloring high girth planar graphs. Electron. J. Comb. 15(1), R124 (2008)
Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg (1987)
Acknowledgments
We thank Michalis Bekos, Gasper Fijavz, and Michael Kaufmann for productive discussions about several variants of these problems.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alam, M.J., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J. (2016). Weak Unit Disk and Interval Representation of Graphs. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-662-53174-7_17
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-53173-0
Online ISBN: 978-3-662-53174-7
eBook Packages: Computer ScienceComputer Science (R0)