Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weak Unit Disk and Interval Representation of Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9224))

Included in the following conference series:

Abstract

We study a variant of intersection representations with unit balls: unit disks in the plane and unit intervals on the line. Given a planar graph and a bipartition of the edges of the graph into near and far edges, the goal is to represent the vertices of the graph by unit-size balls so that the balls for two adjacent vertices intersect if and only if the corresponding edge is near. We consider the problem in the plane and prove that it is NP-hard to decide whether such a representation exists for a given edge-partition. On the other hand, we show that series-parallel graphs (which include outerplanar graphs) admit such a representation with unit disks for any near/far bipartition of the edges. The unit-interval on the line variant is equivalent to threshold graph coloring, in which context it is known that there exist girth-3 planar graphs (even outerplanar graphs) that do not admit such coloring. We extend this result to girth-4 planar graphs. On the other hand, we show that all triangle-free outerplanar graphs and all planar graphs with maximum average degree less than 26/11 have such a coloring, via unit-interval intersection representation on the line. This gives a simple proof that all planar graphs with girth at least 13 have a unit-interval intersection representation on the line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alam, M.J., Chaplick, S., Fijavž, G., Kaufmann, M., Kobourov, S.G., Pupyrev, S.: Threshold-coloring and unit-cube contact representation of graphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 26–37. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Alam, M.J., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J.: Happy edges: threshold-coloring of regular lattices. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 28–39. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R.: Coloring with no 2-colored P4. Electron. J. Combin. 11(1), R26 (2004)

    MATH  Google Scholar 

  4. Borodin, O., Kostochka, A., Nešetřil, J., Raspaud, A., Sopena, E.: On the maximum average degree and the oriented chromatic number of a graph. Dis. Math. 206(1), 77–89 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bremner, D., Evans, W., Frati, F., Heyer, L., Kobourov, S.G., Lenhart, W.J., Liotta, G., Rappaport, D., Whitesides, S.H.: On representing graphs by touching cuboids. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. 9(1), 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bu, Y., Cranston, D.W., Montassier, M., Raspaud, A., Wang, W.: Star coloring of sparse graphs. J. Graph. Theory 62(3), 201–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duffin, R.: Topology of series-parallel networks. J. Math. Anal. Appl. 10, 303–318 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eggleton, R., Erdös, P., Skilton, D.: Colouring the real line. J. Comb. Theory, Ser. B 39(1), 86–100 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans, W., Gansner, E.R., Kaufmann, M., Liotta, G., Meijer, H., Spillner, A.: Approximate proximity drawings. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 166–178. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Herrera de Fegueiredo, C.M., Meidanis, J., Picinin de Mello, C.: A linear-time algorithm for proper interval graph recognition. Inf. Process. Lett. 56(3), 179–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferrara, M., Kohayakawa, Y., Rödl, V.: Distance graphs on the integers. Comb. Probab. Comput. 14(1), 107–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969)

    Google Scholar 

  14. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. J. Algorithms 19(3), 449–473 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12), 1497–1514 (1980)

    Article  Google Scholar 

  16. Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Dis. App. Math. 28(1), 35–44 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hliněnỳ, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Math. 229(1), 101–124 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Kleist, L., Rahman, B.: Unit contact representations of grid subgraphs with regular polytopes in 2D and 3D. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 137–148. Springer, Heidelberg (2014)

    Google Scholar 

  19. Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad hoc networks beyond unit disk graphs. Wireless Netw. 14(5), 715–729 (2008)

    Article  Google Scholar 

  20. Liotta, G.: Proximity drawings. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  21. Mahadev, N.V., Peled, U.N.: Threshold Graphs and Related Topics. North Holland, Amsterdam (1995)

    MATH  Google Scholar 

  22. McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J. Comb. Theory, Ser. B 103(1), 114–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thomassen, C.: Decomposing a planar graph into degenerate graphs. J. Comb. Theory, Ser. B 65(2), 305–314 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Timmons, C.: Star coloring high girth planar graphs. Electron. J. Comb. 15(1), R124 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Michalis Bekos, Gasper Fijavz, and Michael Kaufmann for productive discussions about several variants of these problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pupyrev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alam, M.J., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J. (2016). Weak Unit Disk and Interval Representation of Graphs. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53174-7_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53173-0

  • Online ISBN: 978-3-662-53174-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics