Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modelling Informational Entropy

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11541))

Abstract

By ‘informational entropy’, we understand an inherent boundary to knowability, due e.g. to perceptual, theoretical, evidential or linguistic limits. In this paper, we discuss a logical framework in which this boundary is incorporated into the semantic and deductive machinery, and outline how this framework can be used to model various situations in which informational entropy arises.

The research of the third author is supported by the NWO Vidi grant 016.138.314, the NWO Aspasia grant 015.008.054, and a Delft Technology Fellowship awarded in 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A formal context [17], or polarity, is a structure such that A and X are sets, and \(I\subseteq A\times X\) is a binary relation. Every such induces maps \((\cdot )^\uparrow : \mathcal {P}(A)\rightarrow \mathcal {P}(X)\) and \((\cdot )^\downarrow : \mathcal {P}(X)\rightarrow \mathcal {P}(A)\), respectively defined by the assignments \(B^\uparrow : = I^{(1)}[B]\) and \(Y^\downarrow : = I^{(0)}[Y]\). A formal concept of is a pair \(c = (B, Y)\) such that \(B\subseteq A\), \(Y\subseteq X\), and \(B^{\uparrow } = Y\) and \(Y^{\downarrow } = B\). Given a formal concept \(c = (B,Y)\) we will often write \([\![{c}]\!]\) for B and \((\![{c}]\!)\) for Y and, consequently, \(c = ([\![{c}]\!], (\![{c}]\!))\). The set of the formal concepts of can be partially ordered as follows: for any ,

    $$\begin{aligned} c\le d\quad \text{ iff } \quad B_1\subseteq B_2 \quad \text{ iff } \quad Y_2\subseteq Y_1. \end{aligned}$$

    With this order, is a complete lattice, the concept lattice of . Any complete lattice is isomorphic to the concept lattice of some polarity .

  2. 2.

    Applying the notation (2) to a graph-based \(\mathcal {L}\)-frame , we will sometimes abbreviate \(E^{[0]}[Y]\) and \(E^{[1]}[B]\) as \(Y^{[0]}\) and \(B^{[1]}\), respectively, for each \(Y, B\subseteq Z\). If \(Y= \{y\}\) and \(B = \{b\}\), we write \(y^{[0]}\) and \(b^{[1]}\) for \(\{y\}^{[0]}\) and \(\{b\}^{[1]}\), and write \(Y^{[01]}\) and \(B^{[10]}\) for \((Y^{[0]})^{[1]}\) and \((B^{[1]})^{[0]}\), respectively. Notice that, by Lemma 3, \(Y^{[0]} = I_{E^c}^{(0)}[Y] = Y^{\downarrow }\) and \(B^{[1]} = I_{E^c}^{(1)}[B] = B^{\uparrow }\), where the maps \((\cdot )^\downarrow \) and \((\cdot )^\uparrow \) are those associated with the polarity .

  3. 3.

    In well-known settings (e.g. [15, 22]), indiscernibility is modelled as an equivalence relation. However, transitivity will fail, for example, when zEy iff \(d(z, y)<\alpha \) for some distance function d. It has been argued in the psychological literature (cf. [21, 25]) that symmetry will fail in situations where indiscernibility is understood as similarity, defined e.g. as z is similar to y iff z has all the features y has.

  4. 4.

    Notice that since the E-relation in this example is only ‘one step’, it is automatically transitive and therefore a pre-order. Hence, unsurprisingly, the associated concept lattice is distributive.

References

  1. Chodorow, M.S., Ravin, Y., Sachar, H.E.: A tool for investigating the synonymy relation in a sense disambiguated thesaurus. In: Second Conference on Applied Natural Language Processing, pp. 144–151 (1988)

    Google Scholar 

  2. Conradie, W., Craig, A.: Relational semantics via TiRS graphs. In: TACL 2015 Extended Abstract (2015)

    Google Scholar 

  3. Conradie, W., Craig, A., Palmigiano, A., Wijnberg, N.: Modelling competing theories. In: Proceedings of the EUSFLAT 2019, Atlantis Studies in Uncertainty Modelling (2019, accepted)

    Google Scholar 

  4. Conradie, W., Craig, A., Palmigiano, A., Zhao, Z.: Constructive canonicity for lattice-based fixed point logics. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 92–109. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2_7. ArXiv preprint arXiv:1603.06547

    Chapter  Google Scholar 

  5. Conradie, W., et al.: Rough concepts (2019, submitted)

    Google Scholar 

  6. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.M.: Categories: how I learned to stop worrying and love two sorts. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 145–164. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8_10

    Chapter  MATH  Google Scholar 

  7. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.M.: Toward an epistemic-logical theory of categorization. In: Proceedings of the TARK 2017. EPTCS, vol. 251, pp. 167–186 (2017)

    Google Scholar 

  8. Conradie, W., Palmigiano, A.: Constructive canonicity of inductive inequalities. arXiv preprint arXiv:1603.08341 (2016)

  9. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-distributive logics. Ann. Pure Appl. Log. (2019). https://doi.org/10.1016/j.apal.2019.04.003

    Article  MathSciNet  MATH  Google Scholar 

  10. Conradie, W., Palmigiano, A., Robinson, C., Tzimoulis, A., Wijnberg, N.M.: Modelling socio-political competition (2019, submitted)

    Google Scholar 

  11. Craig, A., Gouveia, M., Haviar, M.: TiRS graphs and TiRS frames: a new setting for duals of canonical extensions. Algebra Universalis 74(1–2), 123–138 (2015)

    Article  MathSciNet  Google Scholar 

  12. Craig, A., Haviar, M.: Reconciliation of approaches to the construction of canonical extensions of bounded lattices. Mathematica Slovaca 64, 1–22 (2014)

    Article  MathSciNet  Google Scholar 

  13. Craig, A., Haviar, M., Priestley, H.A.: A fresh perspective on canonical extensions for bounded lattices. Appl. Categor. Struct. 21(6), 725–749 (2013)

    Article  MathSciNet  Google Scholar 

  14. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  15. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  16. Frittella, S., Manoorkar, K., Palmigiano, A., Tzimoulis, A., Wijnberg, N.M.: Towards a Dempster-Shafer theory of concepts (2019, submitted)

    Google Scholar 

  17. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  18. Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 238(1), 345–371 (2001)

    Article  MathSciNet  Google Scholar 

  19. Greco, G., Jipsen, P., Manoorkar, K., Palmigiano, A., Tzimoulis, A.: Logics for rough concept analysis. In: Khan, M.A., Manuel, A. (eds.) ICLA 2019. LNCS, vol. 11600, pp. 144–159. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58771-3_14

    Chapter  Google Scholar 

  20. Krúdy, Á., Ladunga, K.: Measuring wavelength discrimination threshold along the entire visible spectrum. Periodica Polytechnica Mechanical Engineering 45(1), 41–48

    Google Scholar 

  21. Nosofsky, R.M.: Stimulus bias, asymmetric similarity, and classification. Cogn. Psychol. 23(1), 94–140 (1991)

    Article  Google Scholar 

  22. Pawlak, Z.: Rough set theory and its applications to data analysis. Cybern. Syst. 29(7), 661–688 (1998)

    Article  Google Scholar 

  23. Ploščica, M.: A natural representation of bounded lattices. Tatra Mt. Math. Publ. 5, 75–88 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Champaign (1949)

    MATH  Google Scholar 

  25. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Craig .

Editor information

Editors and Affiliations

Appendices

A Equivalent Compatibility Conditions in Formal Contexts

Lemma 9

  1. 1.

    The following are equivalent for every formal context and every relation \(R\subseteq A\times X\):

    1. (i)

      \(R^{(0)}[x]\) is Galois-stable for every \(x\in X\);

    2. (ii)

      \(R^{(0)} [Y]\) is Galois-stable for every \(Y\subseteq X\);

    3. (iii)

      \(R^{(1)}[B]=R^{(1)}[B^{\uparrow \downarrow }]\) for every \(B\subseteq A\).

  2. 2.

    The following are equivalent for every formal context and every relation \(R\subseteq A\times X\):

    1. (i)

      \(R^{(1)}[a]\) is Galois-stable for every \(a\in A\);

    2. (ii)

      \(R^{(1)} [B]\) is Galois-stable, for every \(B\subseteq A\);

    3. (iii)

      \(R^{(0)}[Y]=R^{(0)}[Y^{\downarrow \uparrow }]\) for every \(Y\subseteq X\).

Proof

We only prove item 1, the proof of item 2 being similar. For \((i)\Rightarrow (ii)\), see [7, Lemma 4]. The converse direction is immediate.

\((i)\Rightarrow (iii)\). Since \((\cdot )^{\uparrow \downarrow }\) is a closure operator, \(B\subseteq B^{\uparrow \downarrow }\). Hence, Lemma 1.1 implies that \(R_{\Box }^{(1)}[B^{\uparrow \downarrow }]\subseteq R_{\Box }^{(1)}[B]\). For the converse inclusion, let \(x\in R_{\Box }^{(1)}[B]\). By Lemma 1.2, this is equivalent to \(B\subseteq R_{\Box }^{(0)}[x]\). Since \(R_{\Box }^{(0)}[x]\) is Galois-stable by assumption, this implies that \(B^{\uparrow \downarrow }\subseteq R_{\Box }^{(0)}[x]\), i.e., again by Lemma 1.2, \(x\in R_{\Box }^{(1)}[B^{\uparrow \downarrow }]\). This shows that \(R_{\Box }^{(1)}[B]\subseteq R_{\Box }^{(1)}[B^{\uparrow \downarrow }]\), as required.

\((iii)\Rightarrow (i)\). Let \(x\in X\). It is enough to show that \((R_{\Box }^{(0)}[x])^{\uparrow \downarrow }\subseteq R_{\Box }^{(0)}[x]\). By Lemma 1.2, \(R_\Box ^{(0)}[x]\subseteq R_\Box ^{(0)}[x]\) is equivalent to \(x\in R_\Box ^{(1)}[R_\Box ^{(0)}[x]]\). By assumption, \(R_{\Box }^{(1)}[R_\Box ^{(0)}[x]]=R_\Box ^{(1)}[(R_\Box ^{(0)}[x])^{\uparrow \downarrow }]\), hence \(x\in R_\Box ^{(1)}[(R_\Box ^{(0)}[x])^{\uparrow \downarrow }]\). Again by Lemma 1.2, this is equivalent to \((R_{\Box }^{(0)}[x])^{\uparrow \downarrow }\subseteq R_{\Box }^{(0)}[x]\), as required.

B Composing Relations on Graph-Based Structures

The present section collects properties of the E-compositions (cf. Definition 5).

Lemma 10

For any graph , relations \(R, S\subseteq Z \times Z\) and \(a, x\in Z\),

figure t

Proof

We only prove the identities in the left column.

figure u
figure v

Lemma 11

If \(R, T\subseteq Z\times Z\) and R is E-compatible, then so are \(R \circ _{E} T\) and \(R \bullet _{E} T\).

Proof

Let \(a\in Z\). By Lemma 10, \((R;T)^{[0]} [a] = R^{[0]}[I^{[0]}[T^{[0]} [a]]]\), hence the following chain of identities holds:

$$\begin{aligned} ((R\, ;T)^{[0]} [a])^{[01]} = (R^{[0]}[I^{[0]}[T^{[0]} [a]]])^{[01]} = R^{[0]}[I^{[0]}[T^{[0]} [a]]] = (R;T)^{[0]} [a], \end{aligned}$$

the second identity in the chain above following from the E-compatibility of R and Lemma 4.1. The remaining conditions for the E-compatibility of \(R \circ _{E} T\) and \(R \bullet _{E} T\) are shown similarly.

The following lemma is the counterpart of [5, Lemma 6] in graph-based semantics.

Lemma 12

If \(R,T\subseteq Z\times Z\) are E-compatible, then for any \(B,Y\subseteq Z\),

$$\begin{aligned} (R\circ _E T)^{[1]}[Y]=R^{[1]}[E^{[1]}[T^{[1]}[Y]]] \quad \quad (R \circ _E T)^{[0]}[B]=R^{[0]}[E^{[0]}[T^{[0]}[B]]]. \end{aligned}$$
$$\begin{aligned} (R\bullet _E T)^{[1]}[B]=R^{[1]}[E^{[0]}[T^{[1]}[B]]] \quad \quad (R \bullet _E T)^{[0]}[Y]=R^{[0]}[E^{[1]}[T^{[0]}[Y]]]. \end{aligned}$$

Proof

We only prove the first identity, the remaining ones being proved similarly.

figure w

Lemma 13

If \(R, T, U\subseteq Z\times Z\) are E-compatible, then \((R\circ _E T)\circ _E U = R\circ _E (T\circ _E U)\) and \((R\bullet _E T)\bullet _E U = R\bullet _E (T\bullet _E U)\).

Proof

For every \(x\in Z\), repeatedly applying Lemma 12 we get:

figure x

which shows that \(x (R\circ _E (T\circ _E U))^c a\) iff \(x ((R\circ _E T)\circ _E U)^ca\) for any \(x, a\in Z\), and hence \(x (R\circ _E (T\circ _E U)) a\) iff \(x ((R\circ _E T)\circ _E U)a\) for any \(x, a\in Z\), as required. The remaining statements are proven similarly.

C Proof of Proposition 4

2.

figure y

3.

figure z

4.

figure aa

5.

figure ab

6.

figure ac

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conradie, W., Craig, A., Palmigiano, A., Wijnberg, N.M. (2019). Modelling Informational Entropy. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science(), vol 11541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59533-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59533-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59532-9

  • Online ISBN: 978-3-662-59533-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics