Nothing Special   »   [go: up one dir, main page]

Skip to main content

Transfer Learning for Breast Cancer Malignancy Classification based on Dynamic Contrast-Enhanced MR Images

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2018

Zusammenfassung

In clinical contexts with very limited annotated data, such as breast cancer diagnosis, training state-of-the art deep neural networks is not feasible. As a solution, we transfer parameters of networks pretrained on natural RGB images to malignancy classification of breast lesions in dynamic contrast-enhanced MR images. Since DCE-MR images comprise several contrasts and timepoints, a direct finetuning of pretrained networks expecting three input channels is not possible. Based on the hypothesis that a subset of the acquired image data is sufficient for a computer-aided diagnosis, we provide an experimental comparison of all possible subsets of MR image contrasts and determine the best combination for malignancy classification. A subset of images acquired at three timepoints of dynamic T1-weighted images which closely corresponds to human interpretation performs best with an AUC of 0.839.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    Google Scholar 

  2. Kuhl CK. The current status of breast MR imaging: part I: choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology. 2007;244(2):356–378.

    Google Scholar 

  3. Kuhl CK. Current status of breast MR imaging: part 2: clinical applications. Radiology. 2007;244(3):672–691.

    Google Scholar 

  4. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Jan;542(7639):115–118.

    Google Scholar 

  5. Revealing hidden potentials of the q-space signal in breast cancer. Proc MICCAI. 2017; p. 664–671.

    Google Scholar 

  6. Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016 May;35(5):1299–1312.

    Google Scholar 

  7. Hadad O, Bakalo R, Ben-Ari R, et al. Classification of breast lesions using crossmodal deep learning. Proc ISBI. 2017; p. 109–112.

    Google Scholar 

  8. Marrone S, Piantadosi G, Fusco R, et al. An investigation of deep learning for lesions malignancy classification in breast DCE-MRI. Proc ICIAP. 2017; p. 479–489.

    Google Scholar 

  9. Antropova N, Huynh B, Giger M. Performance comparison of deep learning and segmentation-based radiomic methods in the task of distinguishing benign and malignant breast lesions on DCE-MRI. Proc SPIE. 2017;(10134).

    Google Scholar 

  10. Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010 June;29(6):1310–1320.

    Google Scholar 

  11. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proc CVPR. 2016 June; p. 770–778.

    Google Scholar 

  12. Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis;(3):211–252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Haarburger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haarburger, C. et al. (2018). Transfer Learning for Breast Cancer Malignancy Classification based on Dynamic Contrast-Enhanced MR Images. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2018. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56537-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56537-7_61

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56536-0

  • Online ISBN: 978-3-662-56537-7

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics