Nothing Special   »   [go: up one dir, main page]

Skip to main content

Properties of Plain, Pure, and Safe Petri Nets

  • Chapter
  • First Online:
Transactions on Petri Nets and Other Models of Concurrency XII

Part of the book series: Lecture Notes in Computer Science ((TOPNOC,volume 10470))

Abstract

A set of necessary conditions for a Petri net to be plain, pure and safe is given. Some applications of these conditions both in practice (for Petri net synthesis), and in theory (e.g., as part of a characterisation of the reachability graphs of live and safe marked graphs) are described.

K. Barylska—Co-funded by project PO KL Information technologies: Research and their interdisciplinary applications, Agreement UDA-POKL.04.01.01-00-051/10-00 and by the Polish National Science Center (grant No.2013/09/D/ST6/03928).

U. Schlachter—Supported by DFG (German Research Foundation) through grant Be 1267/15-1 ARS (Algorithms for Reengineering and Synthesis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Unless infinite nets are considered, which we shall exclude in this paper.

  2. 2.

    Characterisations have been obtained for more restricted classes, e.g. in [4].

  3. 3.

    S can also be considered as a set of vertices and \(\rightarrow \) as a set of edges of a directed graph, labelled by letters from T.

  4. 4.

    In this paper, no arc weights greater than 1 will be considered.

  5. 5.

    This can be verified easily by playing the “token game” in the latter.

  6. 6.

    Note that p is the only unsafe place (with bound 2), and that \(L'\) is the only non-safe reachable marking. In this sense, the example demonstrates that the conjecture is sharp. We also believe that it is the smallest example with this property.

  7. 7.

    For P1 and the other properties, see Definitions 1 and 2.

  8. 8.

    Note that there is also a short path \(s_a[a\rangle 1[c\rangle 2[d\rangle 4[a\rangle 5[c\rangle s_b\) containing a two times. However, this path is not indicative of an unsafe place from a to b, since \(s_a\notin Seq(b)\).

References

  1. Badouel, É., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary nets is NP-complete. Theor. Comput. Sci. 186, 107–134 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theoretical Computer Science. An EATCS Series, p. 339. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47967-4

    Book  MATH  Google Scholar 

  3. Best, E., Devillers, R.: Sequential and concurrent behaviour in Petri net theory. Theor. Comput. Sci. 55(1), 87–136 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Best, E., Devillers, R.: Characterisation of the state spaces of marked graph Petri nets. In: Selected papers of LATA 2014, Information and Computation, vol. 253, Part 3, pp. 399–410 (2014). http://dx.doi.org/10.1016/j.ic.2016.06.006

  5. Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: Proceedings of 8th Interaction and Concurrency Experience, In: Knight, S., Lanese, I., Lafuente, A.L., Vieira, H.T. (eds.) 189 of Electronic Proceedings in Theoretical Computer Science, pp. 53–67, June 2015. http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICE2015.6, https://github.com/CvO-Theory/apt

  6. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked directed graphs. J. Comput. Syst. Sci. 5(5), 511–523 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving petri nets for finite transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998)

    Article  MathSciNet  Google Scholar 

  8. Esparza, J.: Decidability and complexity of Petri net problems — an introduction. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998). doi:10.1007/3-540-65306-6_20

    Chapter  Google Scholar 

  9. Landweber, L.H., Robertson, E.L.: Properties of conflict-free and persistent Petri nets. JACM 25(3), 352–364 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lehmann, D., Pnueli, A., Stavi, J.: Impartiality, justice and fairness: the ethics of concurrent termination. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 264–277. Springer, Heidelberg (1981). doi:10.1007/3-540-10843-2_22

    Chapter  Google Scholar 

  11. Ochmański, E.: On conflict-free executions of elementary nets. Systems Science, 27, Nr. 2, Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej, 89–105. Also: Persistent Runs in Elementary Nets. FolCo Technical report, Nicol. Copernic. Univ. of Toruń, 2014 (2001)

    Google Scholar 

  12. Ochmański, E.: Occurrence traces: processes of elementary net systems. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 340, pp. 331–342. Springer, Heidelberg (1988). doi:10.1007/3-540-50580-6_36

    Chapter  Google Scholar 

  13. Pomello, L., Simone, C.: An algebraic characterisation of elementary net system (observable) state space. Formal Aspects Comput. 4(6A), 612–637 (1992)

    Article  MATH  Google Scholar 

  14. Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer Science. An EATCS Series, vol. 4. Springer, Heidelberg (1985). doi:10.1007/978-3-642-69968-9

    Book  MATH  Google Scholar 

  15. Rozenberg, G.: Behaviour of elementary net systems. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 60–94. Springer, Heidelberg (1987). doi:10.1007/978-3-540-47919-2_4

    Chapter  Google Scholar 

  16. Thiagarajan, P.S.: Elementary net systems. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 26–59. Springer, Heidelberg (1987). doi:10.1007/978-3-540-47919-2_3

    Chapter  Google Scholar 

  17. Schlachter, U.: Petri net synthesis for restricted classes of nets. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 79–97. Springer, Cham (2016). doi:10.1007/978-3-319-39086-4_6

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eike Best .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Barylska, K., Best, E., Schlachter, U., Spreckels, V. (2017). Properties of Plain, Pure, and Safe Petri Nets. In: Koutny, M., Kleijn, J., Penczek, W. (eds) Transactions on Petri Nets and Other Models of Concurrency XII. Lecture Notes in Computer Science(), vol 10470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55862-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55862-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55861-4

  • Online ISBN: 978-3-662-55862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics