Abstract
A set of necessary conditions for a Petri net to be plain, pure and safe is given. Some applications of these conditions both in practice (for Petri net synthesis), and in theory (e.g., as part of a characterisation of the reachability graphs of live and safe marked graphs) are described.
K. Barylska—Co-funded by project PO KL Information technologies: Research and their interdisciplinary applications, Agreement UDA-POKL.04.01.01-00-051/10-00 and by the Polish National Science Center (grant No.2013/09/D/ST6/03928).
U. Schlachter—Supported by DFG (German Research Foundation) through grant Be 1267/15-1 ARS (Algorithms for Reengineering and Synthesis).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Unless infinite nets are considered, which we shall exclude in this paper.
- 2.
Characterisations have been obtained for more restricted classes, e.g. in [4].
- 3.
S can also be considered as a set of vertices and \(\rightarrow \) as a set of edges of a directed graph, labelled by letters from T.
- 4.
In this paper, no arc weights greater than 1 will be considered.
- 5.
This can be verified easily by playing the “token game” in the latter.
- 6.
Note that p is the only unsafe place (with bound 2), and that \(L'\) is the only non-safe reachable marking. In this sense, the example demonstrates that the conjecture is sharp. We also believe that it is the smallest example with this property.
- 7.
- 8.
Note that there is also a short path \(s_a[a\rangle 1[c\rangle 2[d\rangle 4[a\rangle 5[c\rangle s_b\) containing a two times. However, this path is not indicative of an unsafe place from a to b, since \(s_a\notin Seq(b)\).
References
Badouel, É., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary nets is NP-complete. Theor. Comput. Sci. 186, 107–134 (1997)
Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theoretical Computer Science. An EATCS Series, p. 339. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47967-4
Best, E., Devillers, R.: Sequential and concurrent behaviour in Petri net theory. Theor. Comput. Sci. 55(1), 87–136 (1987)
Best, E., Devillers, R.: Characterisation of the state spaces of marked graph Petri nets. In: Selected papers of LATA 2014, Information and Computation, vol. 253, Part 3, pp. 399–410 (2014). http://dx.doi.org/10.1016/j.ic.2016.06.006
Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: Proceedings of 8th Interaction and Concurrency Experience, In: Knight, S., Lanese, I., Lafuente, A.L., Vieira, H.T. (eds.) 189 of Electronic Proceedings in Theoretical Computer Science, pp. 53–67, June 2015. http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICE2015.6, https://github.com/CvO-Theory/apt
Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked directed graphs. J. Comput. Syst. Sci. 5(5), 511–523 (1971)
Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving petri nets for finite transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998)
Esparza, J.: Decidability and complexity of Petri net problems — an introduction. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998). doi:10.1007/3-540-65306-6_20
Landweber, L.H., Robertson, E.L.: Properties of conflict-free and persistent Petri nets. JACM 25(3), 352–364 (1978)
Lehmann, D., Pnueli, A., Stavi, J.: Impartiality, justice and fairness: the ethics of concurrent termination. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 264–277. Springer, Heidelberg (1981). doi:10.1007/3-540-10843-2_22
Ochmański, E.: On conflict-free executions of elementary nets. Systems Science, 27, Nr. 2, Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej, 89–105. Also: Persistent Runs in Elementary Nets. FolCo Technical report, Nicol. Copernic. Univ. of Toruń, 2014 (2001)
Ochmański, E.: Occurrence traces: processes of elementary net systems. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 340, pp. 331–342. Springer, Heidelberg (1988). doi:10.1007/3-540-50580-6_36
Pomello, L., Simone, C.: An algebraic characterisation of elementary net system (observable) state space. Formal Aspects Comput. 4(6A), 612–637 (1992)
Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer Science. An EATCS Series, vol. 4. Springer, Heidelberg (1985). doi:10.1007/978-3-642-69968-9
Rozenberg, G.: Behaviour of elementary net systems. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 60–94. Springer, Heidelberg (1987). doi:10.1007/978-3-540-47919-2_4
Thiagarajan, P.S.: Elementary net systems. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 26–59. Springer, Heidelberg (1987). doi:10.1007/978-3-540-47919-2_3
Schlachter, U.: Petri net synthesis for restricted classes of nets. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 79–97. Springer, Cham (2016). doi:10.1007/978-3-319-39086-4_6
Acknowledgment
The authors are grateful to the reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Germany
About this chapter
Cite this chapter
Barylska, K., Best, E., Schlachter, U., Spreckels, V. (2017). Properties of Plain, Pure, and Safe Petri Nets. In: Koutny, M., Kleijn, J., Penczek, W. (eds) Transactions on Petri Nets and Other Models of Concurrency XII. Lecture Notes in Computer Science(), vol 10470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55862-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-662-55862-1_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-55861-4
Online ISBN: 978-3-662-55862-1
eBook Packages: Computer ScienceComputer Science (R0)