Abstract
The Lambek calculus is a well-known logical formalism for modelling natural language syntax. The original calculus covered a substantial number of intricate natural language phenomena, but only those restricted to the context-free setting. In order to address more subtle linguistic issues, the Lambek calculus has been extended in various ways. In particular, Morrill and Valentín (2015) introduce an extension with so-called exponential and bracket modalities. Their extension is based on a non-standard contraction rule for the exponential that interacts with the bracket structure in an intricate way. The standard contraction rule is not admissible in this calculus. In this paper we prove undecidability of the derivability problem in their calculus. We also investigate restricted decidable fragments considered by Morrill and Valentín and we show that these fragments belong to the NP class.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abrusci, V.M.: A comparison between Lambek syntactic calculus and intuitionistic linear propositional logic. Zeitschr. für math. Log. Grundl. Math. (Math. Logic Q.) 36, 11–15 (1990)
Ajdukiewicz, K.: Die syntaktische Konnexität. Studia Philos. 1, 1–27 (1935)
Bar-Hillel, Y.: A quasi-arithmetical notation for syntactic description. Language 29, 47–58 (1953)
Barry, G., Hepple, M., Leslie, N., Morrill, G.: Proof figures and structural operators for categorial grammar. In: Proceedings of 5th Conference of the European Chapter of ACL, Berlin (1991)
Braüner, T., de Paiva, V.: Cut elimination for full intuitionstic linear logic. BRICS report RS-96-10, April 1996
Braüner, T., de Paiva, V.: A formulation of linear logic based on dependency-relations. In: Nielsen, M., Thomas, W. (eds.) CSL 1997. LNCS, vol. 1414, pp. 129–148. Springer, Heidelberg (1998). doi:10.1007/BFb0028011
Braüner, T.: A cut-free Gentzen formulation of modal logic S5. Log. J. IGPL 8(5), 629–643 (2000)
Buszkowski, W.: Some decision problems in the theory of syntactic categories. Zeitschr. für math. Logik und Grundl. der Math. (Math. Logic Q.) 28, 539–548 (1982)
Buszkowski, W.: Type logics in grammar. In: Hendricks, V.F., Malinowski, J. (eds.) Trends in Logic: 50 Years of Studia Logica, pp. 337–382. Springer, Dordrecht (2003). doi:10.1007/978-94-017-3598-8_12
Buszkowski, W.: Lambek calculus with nonlogical axioms. In: Language and Grammar. CSLI Lecture Notes, vol. 168, pp. 77–93 (2005)
Carpenter, B.: Type-Logical Semantics. MIT Press, Cambridge (1997)
Dekhtyar, M., Dikovsky, A.: Generalized categorial dependency grammars. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 230–255. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78127-1_13
Eades III, H., de Paiva, V.: Multiple conclusion linear logic: cut elimination and more. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 90–105. Springer, Cham (2016). doi:10.1007/978-3-319-27683-0_7
Gentzen, G.: Untersuchungen über das logische Schließen I. Math. Z. 39, 176–210 (1935)
Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
de Groote, P.: On the expressive power of the Lambek calculus extended with a structural modality. In: Language and Grammar. CSLI Lecture Notes, vol. 168, pp. 95–111 (2005)
Kanazawa, M.: Lambek calculus: recognizing power and complexity. In: Gerbrandy, J., et al. (eds.) JFAK. Essays dedicated to Johan van Benthem on the occasion of his 50th birthday. Vossiuspers, Amsterdam University Press, Amsterdam (1999)
Kanovich, M.: The complexity of neutrals in linear logic. In: Proceedings of LICS 1995, pp. 486–495 (1995)
Kanovich, M., Kuznetsov, S., Scedrov, A.: Undecidability of the Lambek calculus with a relevant modality. In: Foret, A., Morrill, G., Muskens, R., Osswald, R., Pogodalla, S. (eds.) FG 2015-2016. LNCS, vol. 9804, pp. 240–256. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53042-9_14. arXiv:1601.06303
Kanovich, M., Kuznetsov, S., Scedrov, A.: Undecidability of the Lambek calculus with subexponential and bracket modalities (extended technical report). arXiv:1608.04020 (2017)
Kanovich, M., Kuznetsov, S., Morrill, G., Scedrov, A.: A polynomial time algorithm for the Lambek calculus with brackets of bounded order. arXiv:1705.00694 (2017). Accepted to FSCD 2017
Kuznetsov, S.L.: On the Lambek calculus with a unit and one division. Moscow Univ. Math. Bull. 66(4), 173–175 (2011)
Lambek, J.: The mathematics of sentence structure. Amer. Math. Mon. 65(3), 154–170 (1958)
Lambek, J.: Deductive systems and categories II. Standard constructions and closed categories. In: Hilton, P.J. (ed.) Category Theory, Homology Theory and their Applications I. LNM, vol. 86, pp. 76–122. Springer, Heidelberg (1969). doi:10.1007/BFb0079385
Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. APAL 56, 239–311 (1992)
Markov, A.: On the impossibility of certain algorithms in the theory of associative systems. Doklady Acad. Sci. USSR (N.S.) 55, 583–586 (1947)
Moortgat, M.: Multimodal linguistic inference. J. Log. Lang. Inform. 5(3–4), 349–385 (1996)
Moot, R., Retoré, C.: The Logic of Categorial Grammars: A Deductive Account of Natural Language Syntax and Semantics. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31555-8
Morrill, G.: Categorial formalisation of relativisation: pied piping, islands, and extraction sites. Technical report LSI-92-23-R, Universitat Politècnica de Catalunya (1992)
Morrill, G.V.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford University Press, Oxford (2011)
Morrill, G.: CatLog: a categorial parser/theorem-prover. In: System Demonstration, LACL 2012, Nantes (2012)
Morrill, G.: Grammar logicised: relativisation. Linguist. Philos. 40(2), 119–163 (2017)
Morrill, G., Valentín, O.: Computational coverage of TLG: nonlinearity. In: Proceedings of NLCS 2015. EPiC Series, vol. 32, pp. 51–63 (2015)
Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponentials. In: Proceedings of PPDP 2009, pp. 129–140. ACM (2009)
Pentus, M.: Lambek calculus is NP-complete. Theor. Comput. Sci. 357(1), 186–201 (2006)
Pentus, M.: A polynomial time algorithm for Lambek grammars of bounded order. Linguist. Anal. 36(1–4), 441–471 (2010)
Post, E.L.: Recursive unsolvability of a problem of Thue. J. Symb. Log. 12, 1–11 (1947)
Ross, J.R.: Constraints on variables in syntax. Ph.D. thesis, MIT (1967)
Steedman, M.: The Syntactic Process. MIT Press, Cambridge, MA (2000)
Thue, A.: Probleme über Veränderungen von Zeichenreihen nach gegebener Regeln. Kra. Vidensk. Selsk. Skrifter. 10 (1914). (In: Selected Math. Papers, Univ. Forlaget, Oslo, pp. 493–524 (1977))
Acknowledgements
The work of M. Kanovich and A. Scedrov was supported by the Russian Science Foundation under grant 17-11-01294 and performed at National Research University Higher School of Economics, Russia. The work of S. Kuznetsov was supported by grants RFBR 15-01-09218-a and NŠ-9091.2016.1. Sections 1 and 3 were contributed by S. Kuznetsov, Sects. 2 and 4 by M. Kanovich and A. Scedrov, and Sects. 5, 6, and 7 were contributed jointly and equally by all coauthors.
The authors are grateful to V. de Paiva and T. Braüner for helpful comments on the deep cut elimination procedure.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Germany
About this paper
Cite this paper
Kanovich, M., Kuznetsov, S., Scedrov, A. (2017). Undecidability of the Lambek Calculus with Subexponential and Bracket Modalities. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-662-55751-8_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-55750-1
Online ISBN: 978-3-662-55751-8
eBook Packages: Computer ScienceComputer Science (R0)