Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weak MSO+U with Path Quantifiers over Infinite Trees

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

Abstract

This paper shows that over infinite trees, satisfiability is decidable for weak monadic second-order logic extended by the unbounding quantifier \(\mathsf U\) and quantification over infinite paths. The proof is by reduction to emptiness for a certain automaton model, while emptiness for the automaton model is decided using profinite trees.

Full version of this paper with proofs is at arxiv.org/abs/1404.7278.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Bojańczyk, M.: Weak mso with the unbounding quantifier. Theory Comput. Syst. 48(3), 554–576 (2011)

    MATH  MathSciNet  Google Scholar 

  3. Bojańczyk, M., Colcombet, T.: Bounds in ω-regularity. In: LICS, pp. 285–296 (2006)

    Google Scholar 

  4. Bojańczyk, M., Gogacz, T., Michalewski, H., Skrzypczak, M.: On the decidability of MSO+U on infinite trees. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 50–61. Springer, Heidelberg (2014)

    Google Scholar 

  5. Bojańczyk, M., Toruńczyk, S.: Deterministic automata and extensions of weak mso. In: FSTTCS, pp. 73–84 (2009)

    Google Scholar 

  6. Bojańczyk, M., Toruńczyk, S.: wmso+u over infinite trees. In: STACS, pp. 648–660 (2012)

    Google Scholar 

  7. Brázdil, T., Chatterjee, K., Kučera, A., Novotný, P.: Efficient controller synthesis for consumption games with multiple resource types. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 23–38. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Colcombet, T.: The theory of stabilisation monoids and regular cost functions. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 139–150. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Colcombet, T., Löding, C.: The non-deterministic Mostowski hierarchy and distance-parity automata. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 398–409. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Fijalkow, N., Zimmermann, M.: Cost-parity and cost-Streett games. In: FSTTCS, pp. 124–135 (2012)

    Google Scholar 

  11. Hummel, S., Skrzypczak, M.: The topological complexity of mso+u and related automata models. Fundam. Inform. 119(1), 87–111 (2012)

    MATH  MathSciNet  Google Scholar 

  12. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal Methods in System Design 34(2), 83–103 (2009)

    Article  MATH  Google Scholar 

  13. McNaughton, R.: Finite state infinite games. Project MAC Report, MIT (1965)

    Google Scholar 

  14. Toruńczyk, S.: Languages of profinite words and the limitedness problem. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 377–389. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Vanden Boom, M.: Weak cost monadic logic over infinite trees. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 580–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bojańczyk, M. (2014). Weak MSO+U with Path Quantifiers over Infinite Trees. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics