Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unary Pushdown Automata and Straight-Line Programs

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

Abstract

We consider decision problems for deterministic pushdown automata over the unary alphabet (udpda, for short). Udpda are a simple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed membership problems are P-complete, and inclusion is coNP-complete. Our upper bounds are based on a translation theorem between udpda and straight-line programs over the binary alphabet (SLPs). We show that the characteristic sequence of any udpda can be represented as a pair of SLPs—one for the prefix, one for the lasso—that have size linear in the size of the udpda and can be computed in polynomial time. Hence, decision problems on udpda are reduced to decision problems on SLPs. Conversely, any SLP can be converted in logarithmic space into a udpda, and this forms the basis for our lower bound proofs. We show coNP-hardness of the ordered matching problem for SLPs, from which we derive coNP-hardness for inclusion. In addition, we complete the complexity landscape for unary nondeterministic pushdown automata by showing that the universality problem is Π2 P-hard, using a new class of integer expressions. Our techniques have applications beyond udpda. We show that our results imply Π2 P-completeness for a natural fragment of Presburger arithmetic and coNP lower bounds for compressed matching problems with one-character wildcards.

The full version of the paper is available at http://arxiv.org/abs/1403.0509 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the complexity of pattern matching for highly compressed two-dimensional texts. JCSS 65(2), 332–350 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. TCS 218(1), 135–141 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertoni, A., Choffrut, C., Radicioni, R.: Literal shuffle of compressed words. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) IFIP TCS 2008. IFIP, vol. 273, pp. 87–100. Springer, Boston (2008)

    Google Scholar 

  4. Böhm, S., Göller, S., Jančar, P.: Equivalence of deterministic one-counter automata is NL-complete. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC’13, pp. 131–140. ACM (2013)

    Google Scholar 

  5. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC 1 computation. JCSS 57(2), 200–212 (1998)

    Article  MATH  Google Scholar 

  6. Fischer, M.J., Paterson, M.S.: String-matching and other products. In: Karp, R. (ed.) SIAM-AMS Proceedings, vol. 7. AMS (1974)

    Google Scholar 

  7. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. Journal of the ACM 9(3), 350–371 (1962)

    Article  MathSciNet  Google Scholar 

  8. Glaßer, C., Herr, K., Reitwießner, C., Travers, S., Waldherr, M.: Equivalence problems for circuits over sets of natural numbers. Theory of Computing Systems 46(1), 80–103 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldschlager, L.M.: ε-productions in context-free grammars. Acta Informatica 16(3), 303–308 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grädel, E.: Dominoes and the complexity of subclasses of logical theories. Annals of Pure and Applied Logic 43(1), 1–30 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grädel, E.: Subclasses of Presburger arithmetic and the polynomial-time hierarchy. TCS 56(3), 289–301 (1988)

    Article  MATH  Google Scholar 

  12. Hunt III, H.B., Rosenkrantz, D.J., Szymanski, T.G.: On the equivalence, containment, and covering problems for the regular and context-free languages. JCSS 12(2), 222–268 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huynh, D.T.: Commutative grammars: the complexity of uniform word problems. Information and Control 57, 21–39 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Huynh, D.T.: Deciding the inequivalence of context-free grammars with 1-letter terminal alphabet is \(\Sigma_2^p\)-complete. TCS 33(2–3), 305–326 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jančar, P.: Decidability of DPDA language equivalence via first-order grammars. In: LICS 2012, pp. 415–424. IEEE (2012)

    Google Scholar 

  16. Jeż, A.: The complexity of compressed membership problems for finite automata. Theory of Computing Systems, 1–34 (2013)

    Google Scholar 

  17. Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time. TCS 3(2), 105–117 (1976)

    Article  MathSciNet  Google Scholar 

  18. Kopczyński, E., To, A.W.: Parikh images of grammars: complexity and applications. In: LICS 2010, pp. 80–89. IEEE Computer Society (2010)

    Google Scholar 

  19. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complexity Cryptology 4(2), 241–299 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lohrey, M.: Leaf languages and string compression. Information and Computation 209(6), 951–965 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lohrey, M.: Word problems and membership problems on compressed words. SIAM Journal on Computing 35(5), 1210–1240 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. McKenzie, P., Wagner, K.W.: The complexity of membership problems for circuits over sets of natural numbers. Computational Complexity 16(3), 211–244 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pighizzini, G.: Deterministic pushdown automata and unary languages. International Journal of Foundations of Computer Science 20(4), 629–645 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed words. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 262–272. Springer (1999)

    Google Scholar 

  26. Schmidt-Schauß, M.: Matching of compressed patterns with character variables. In: Tiwari, A. (ed.) RTA 2012. LIPIcs, vol. 15, pp. 272–287. Dagstuhl (2012)

    Google Scholar 

  27. Schöning, U.: Complexity of Presburger arithmetic with fixed quantifier dimension. Theory of Computing Systems 30(4), 423–428 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sénizergues, G.: L(A) = L(B)? A simplified decidability proof. TCS 281(1-2), 555–608 (2002)

    Article  MATH  Google Scholar 

  29. Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, L., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 821–832. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  30. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary report. In: STOC 1973, pp. 1–9. ACM (1973)

    Google Scholar 

  31. Valiant, L.: Decision procedures for families of deterministic pushdown automata. PhD thesis. University of Warwick (1973)

    Google Scholar 

  32. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational Horn clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337–352. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  33. Von zur Gathen, J., Sieveking, M.: A bound on solutions of linear integer equalities and inequalities. Proceedings of the AMS 72(1), 155–158 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chistikov, D., Majumdar, R. (2014). Unary Pushdown Automata and Straight-Line Programs. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics