Nothing Special   »   [go: up one dir, main page]

Skip to main content

Level Set Method Based Image Segmentation by Combining Local Information with Global Information

  • Conference paper
  • First Online:
Trustworthy Computing and Services (ISCTCS 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 426))

Included in the following conference series:

  • 1253 Accesses

Abstract

A novel level set based image segmentation method is proposed in this paper. After analyzing advantages and drawbacks of SBGFRLS and LSD model, we propose a way to combine local information and global information through utilizing weighted energy generated by SBGFRLS model to reduce segmentation error and accelerate curve evolution. The total energy of proposed method comprises of local energy term, length term and weighted global energy term. In our experiments, two alternative values for the coefficient of global term are 0.1 or −0.1. Experiments on images with noise and intensity inhomogeneities show that the proposed method is effective and more accurate than both SBGFRLS model and LSD model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ilea, D.E., Whelan, P.F.: Color image segmentation using a self-initializing EM algorithm. In: Proceedings of the 6th IASTED International Conference on Visualization, Imaging, and Image Processing (2006)

    Google Scholar 

  2. Chen, K.M., Chen, S.Y.: Color texture segmentation using feature distributions. Pattern Recogn. Lett. 23(7), 755–771 (2002)

    Article  MATH  Google Scholar 

  3. Pappas, T.N.: An adaptive clustering-algorithm for image segmentation. IEEE Trans. Sig. Process. 40(4), 901–914 (1992)

    Article  Google Scholar 

  4. Junqing, C., Pappas, T.N., Mojsilovic, A., Rogowitz, B.E.: Adaptive perceptual color-texture image segmentation. IEEE Trans. Image Process. 14(10), 1524–1536 (2005)

    Article  Google Scholar 

  5. Zoller, T., Hermes, L., Buhmann, J.M.: Combined color and texture segmentation by parametric distributional clustering. In: 16th International Conference on Pattern Recognition, Vol II, Proceedings (2002)

    Google Scholar 

  6. Ilea, D.E., Whelan, P.F.: CTex - An adaptive unsupervised segmentation algorithm based on color-texture coherence. IEEE Trans. Image Process. 17(10), 1926–1939 (2008)

    Article  MathSciNet  Google Scholar 

  7. Kato, Z., Pong, T.-C.: A Markov random field image segmentation model for color textured images. Image Vis. Comput. 24, 1103–1114 (2006)

    Article  Google Scholar 

  8. Serrano, C., Acha, B.: Pattern analysis of dermoscopic images based on Markov random fields. Pattern Recogn. 42(6), 1052–1057 (2009)

    Article  Google Scholar 

  9. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. In: Proceedings of the 1st International Conference on Computer Vision (Cat. No.87CH2465-3) (1987)

    Google Scholar 

  10. Sundaramoorthi, G., Yezzi, A., Mennucci, A.C., Sapiro, G.: New possibilities with Sobolev active contours. Int. J. Comput. Vis. 84(2), 113–129 (2009)

    Article  Google Scholar 

  11. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  12. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  13. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  14. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  15. Tsai, A., Yezzi, A., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  16. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational-problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chunming, L., Chenyang, X., Changfeng, G., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings (2005)

    Google Scholar 

  18. Li, C.M., Kao, C.Y., Gore, J.C., Ding, Z.H.: Implicit active contours driven by local binary fitting energy, In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1–8, 2007

    Google Scholar 

  19. Wang, L., He, L., Mishra, A., Li, C.M.: Active contours driven by local Gaussian distribution fitting energy. Sig. Process. 89(12), 2435–2447 (2009)

    Article  MATH  Google Scholar 

  20. Wang, L., Wu, H., Pan, C.: Region-based image segmentation with local signed difference energy. Pattern Recogn. Lett. 34(6), 637–645 (2013)

    Article  Google Scholar 

  21. Wang, Y., Wang, L.F., Xiang, S.M., Pan, C.H.: Level set evolution with locally linear classification for image segmentation. In: 2011 18th IEEE International Conference on Image Processing (2011)

    Google Scholar 

  22. Kaihua, Z., Lei, Z., Huihui, S., Wengang, Z.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28(4), 668–676 (2010)

    Article  Google Scholar 

  23. Shi, Y.G., Karl, W.C.: Real-time tracking using level sets. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 2, Proceedings (2005)

    Google Scholar 

  24. Perona, P., Malik, J.: Scale-space and edge-detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China under Grant NO. 61305051 and National High-Tech Research and Development Plan of China under Grant No. 2012AA01A306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, C., Wu, W., Su, Y. (2014). Level Set Method Based Image Segmentation by Combining Local Information with Global Information. In: Yuan, Y., Wu, X., Lu, Y. (eds) Trustworthy Computing and Services. ISCTCS 2013. Communications in Computer and Information Science, vol 426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43908-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43908-1_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43907-4

  • Online ISBN: 978-3-662-43908-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics