Abstract
The application of fingerprinting techniques to relational data cannot protect personal information against a collusion attack, in which the attacker has access to a set of published data. The general fingerprinting techniques such as Li et at.’s, Guo et al.’s, and Schrittwieser et al.’s focus on detecting the traitor, who leaked the data. Among them, Schrittwieser et al.’s fingerprinting technique combines \(k\)-anonymity and full-domain generalization in order to not only detect traitors but also protect personal records. However, the technique has two main limitations. First, it does not allow the data provider to insert or delete records from the original data. Secondly, it does not create enough fingerprints for data recipients. To overcome these limitations, in this paper, we propose an (\(\alpha ,k\))-privacy protection model, an extension of \(m\)-invariance and (\(\alpha , k\))-anonymity, and a new top-down (\(\alpha , k\))-privacy fingerprinting algorithm based on that model. The model not only protects sensitive personal information against collusion attacks but also allows data providers to republish their updated original data without degrading the privacy protection. The algorithm embeds fingerprints in the generalized data and extracts them from leaked data to detect the traitors. We extensively evaluate the proposed algorithm on our own built software. The evaluation results show that our algorithm creates more fingerprints than Schrittwieser et al.’s algorithm (64000 vs 1536) while achieving the same generalized data quality. Moreover, our (\(\alpha , k\))-privacy algorithm creates generalized data even in the case of having small number of distinct sensitive values in the original data without adding faked records as in \(m\)-invariance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Kiernan, J.: Watermarking relational databases. In: Proceedings of the 28th International Conference on Very Large Data Bases. pp. 155–166. VLDB Endowment (2002)
Anjum, A., Raschia, G.: Anonymizing sequential releases under arbitrary updates. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops, EDBT ’13, pp. 145–154 (2013)
Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, pp. 217–228. IEEE (2005)
Byun, J.-W., Sohn, Y., Bertino, E., Li, N.: Secure anonymization for incremental datasets. In: Jonker, W., Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 48–63. Springer, Heidelberg (2006)
Fung, B., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. (CSUR) 42(4), 14 (2010)
Fung, B.C., Wang, K., Yu, P.S.: Anonymizing classification data for privacy preservation. IEEE Trans. Knowl. Data Eng. 19(5), 711–725 (2007)
Guo, F., Wang, J., Li, D.: Fingerprinting relational databases. In: Proceedings of the 2006 ACM Symposium on Applied Computing, pp. 487–492. ACM (2006)
Hoang, A.T., Tran, M.T., Duong, A.D., Echizen, I.: An indexed bottom-up approach for publishing anonymized data. In: 2012 Eighth International Conference on Computational Intelligence and Security (CIS), pp. 641–645. IEEE (2012)
LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 49–60. ACM (2005)
Li, Y., Swarup, V., Jajodia, S.: Constructing a virtual primary key for fingerprinting relational data. In: Proceedings of the 3rd ACM Workshop on Digital Rights Management, pp. 133–141. ACM (2003)
Li, Y., Swarup, V., Jajodia, S.: Fingerprinting relational databases: schemes and specialties. IEEE Trans. Dependable Secure Comput. 2(1), 34–45 (2005)
Liu, S., Wang, S., Deng, R.H., Shao, W.-Z.: A block oriented fingerprinting scheme in relational database. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 455–466. Springer, Heidelberg (2005)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 3 (2007)
Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 223–228. ACM (2004)
Mohammed, N., Fung, B., Wang, K., Hung, P.C.: Privacy-preserving data mashup. In: Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology. pp. 228–239. ACM (2009)
Pournaghshband, V.: A new watermarking approach for relational data. In: Proceedings of the 46th Annual Southeast Regional Conference on XX, pp. 127–131. ACM, New York (2008)
Schrittwieser, S., Kieseberg, P., Echizen, I., Wohlgemuth, S., Sonehara, N., Weippl, E.: An algorithm for k-anonymity-based fingerprinting. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 439–452. Springer, Heidelberg (2012)
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002)
Wong, R.C.W., Li, J., Fu, A.W.C., Wang, K.: (\(\alpha \), k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 754–759. ACM (2006)
Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of dynamic datasets. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 689–700. ACM (2007)
Zhang, Q., Koudas, N., Srivastava, D., Yu, T.: Aggregate query answering on anonymized tables. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 116–125. IEEE (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hoang, AT., Nguyen-Son, HQ., Tran, MT., Echizen, I. (2014). Detecting Traitors in Re-publishing Updated Datasets. In: Shi, Y., Kim, HJ., Pérez-González, F. (eds) Digital-Forensics and Watermarking. IWDW 2013. Lecture Notes in Computer Science(), vol 8389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43886-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-662-43886-2_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43885-5
Online ISBN: 978-3-662-43886-2
eBook Packages: Computer ScienceComputer Science (R0)