Abstract
Molecular QCA are considered among the most promising beyond CMOS devices. Frequency as well as self-assembly characteristics are the features that make them most attractive. Several challenges restrain them for being exploited from a practical point of view in the near future, not only for the difficulties at the technological level, but for the inappropriateness of the tools used when studying and predicting their behavior.
In this chapter we describe our methodology to simulate and model sequences of bisferrocene molecules aimed at understanding the behavior of a realistic MQCA wire. The simulations consider as variables distances between successive molecules, as well as different electric field applied (in terms of input and of clock). The method can be used to simulate and model also other more complex structures, and perspectives are given on the exploitation of the achieved results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)
Vankamamidi, V., Ottavi, M., Lombardi, F.: Clocking and cell placement for QCA. In: IEEE-NANO 2006, vol. 1, pp. 343–346 (2006)
Graziano, M., Vacca, M., Chiolerio, A., Zamboni, M.: A NCL-HDL Snake-Clock based magnetic QCA architecture. IEEE Trans. Nanatechnol. 10(5), 1141–1149 (2011)
Graziano, M., Chiolerio, A., Zamboni, M.: A technology aware magnetic QCA NCL-HDL architecture. In: 9th IEEE Conference on Nanotechnology, 2009, IEEE-NANO 2009, Genova, Italy, pp. 763–766. IEEE (2009)
Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19, 1752–1755 (2001)
Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50, 1890–1896 (2003)
Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)
Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125, 15250–15259 (2003)
Jiao, J., Long, G.J., Rebbouh, L., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Properties of a mixed-valence (Fe-II)(2)(Fe-III)(2) square cell for utilization in the quantum cellular automata paradigm for molecular electronics. J. Am. Chem. Soc. 127, 17819–17831 (2005)
Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4, 115–118 (2005)
Lu, Y., Liu, M., Lent, C.S.: Molecular quantum-dot cellular automata: from molecular structure to circuit dynamics. J. Appl. Phys. 102, 034311–034317 (2007)
Chiolerio, A., Allia, P., Graziano, M.: Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices. J. Magn. Magn. Mater. 324(19), 3006–3012 (2012)
Vacca, M., Graziano, M., Zamboni, M.: Majority voter full characterization for nanomagnet logic circuits. IEEE Trans. Nanotechnol. 11(5), 940–947 (2012)
Graziano, M., Vacca, M., Blua, D., Zamboni, M.: Asynchrony in quantum-dot cellular automata nanocomputation: Elixir or Poison? IEEE Des. Test Comput. 28(5), 72–83 (2011)
Vacca, M., Graziano, M., Zamboni, M.: Asynchronous solutions for nano-magnetic logic circuits. ACM J. Emerging Tech. Comp. Syst. 7(4), 15:1–15:18 (2011)
Lu, Y., Lent, C.S.: Self-doping of molecular quantum-dot cellular automata: mixed valence zwitterions. Phys. Chem. Chem. Phys. 13, 14928–14936 (2011)
Wang, X., Ma, J.: Electron switch in the double-cage fluorinated fullerene anions: new candidates for molecular quantum-dot cellular automata. Phys. Chem. Chem. Phys. 2011(13), 16134–16137 (2011)
Zoli, L.: Active bis-ferrocene molecules as unit for molecular computation. Ph.D. dissertation (2010)
Arima, V., Iurlo, M., Zoli, L., Kumar, S., Piacenza, M., Della Sala, F., Matino, F., Maruccio, G., Rinaldi, R., Paolucci, F., Marcaccio, M., Cozzi, P.G., Bramanti, A.P.: Toward quantum-dot cellular automata units. Nanoscale 4, 813–823 (2012)
Pulimeno, A., Graziano, M., Abrardi, C., Demarchi, D., Piccinini, G.: Molecular QCA: a write-in system based on electric fields. In: IEEE Nanoelectronics Conference (INEC), June 2011 (2011)
Pulimeno, A., Graziano, M., Demarchi, D., Piccinini, G.: Towards a molecular QCA wire: simulation of write-in and read-out systems. Solid State Electron. 77, 101–107 (2012). (Elsevier)
Pulimeno, A., Graziano, M., Piccinini, G.: Molecule interaction for QCA computation. In: IEEE NANO2012 12th International Conference on Nanotechnology, Birmingham (UK), 20–23 August 2012 (2012)
Pulimeno, A., Graziano, M., Sanginario, A., Cauda, V., Demarchi, D., Piccinini, G.: Bis-ferrocene molecular QCA wire: ab-initio simulations of fabrication driven fault tolerance. IEEE Trans. Nanotechnol. 12, 498–507 (2013)
Wang, X., Chen, S., Wen, J., Ma, J.: Exploring the possibility of noncovalently surface bound molecular quantum-dot cellular automata: theoretical simulations of deposition of double-cage fluorinated fullerenes on Ag(100) surface. J. Phys. Chem. C 117, 1308–1314 (2012)
Lu, Y., Quardokus, R., Lent, C.S., Justaud, F., Lapinte, C., Kandel, A.: Charge localization in isolated mixed-valence complexes: an STM and theoretical study. J. Am. Chem. Soc. 132, 13519–13524 (2010)
Quardokus, R., Lu, Y., Wasio, N.A., Lent, C.S., Justaud, F., Lapinte, C., Kandel, S.A.: Through-bond versus through-space coupling in mixed-valence molecules: observation of electron localization at the single-molecule scale. J. Am. Chem. Soc. 134, 1710–1714 (2012)
Singh, U.C., Kollman, P.A.: An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5, 129–145 (1984)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Pulimeno, A., Graziano, M., Antidormi, A., Wang, R., Zahir, A., Piccinini, G. (2014). Understanding a Bisferrocene Molecular QCA Wire. In: Anderson, N., Bhanja, S. (eds) Field-Coupled Nanocomputing. Lecture Notes in Computer Science(), vol 8280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43722-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-662-43722-3_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43721-6
Online ISBN: 978-3-662-43722-3
eBook Packages: Computer ScienceComputer Science (R0)