Nothing Special   »   [go: up one dir, main page]

Skip to main content

Path Planning for Swarms by Combining Probabilistic Roadmaps and Potential Fields

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8069))

Included in the following conference series:

Abstract

This paper combines probabilistic roadmaps with potential fields in order to enable a robotic swarm to effectively move to a desired destination while avoiding collisions with obstacles and each other. Potential fields provide the robots with local, reactive, behaviors that seek to keep the swarm moving in cohesion and away from the obstacles. The probabilistic roadmap provides global path planning which guides the swarm through a series of intermediate goals in order to effectively reach the desired destination. Random walks in combination with adjustments to the potential fields and intermediate goals are used to help stuck robots escape local minima. Experimental results provide promising validation on the efficiency and scalability of the proposed approach. Source code is made publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21, 25–34 (1987)

    Article  Google Scholar 

  2. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7, 1–41 (2012)

    Article  Google Scholar 

  4. Reif, J.: Complexity of the mover’s problem and generalizations. In: IEEE Symposium on Foundations of Computer Science, pp. 421–427 (1979)

    Google Scholar 

  5. Canny, J.: The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA (1988)

    Google Scholar 

  6. Schwartz, J.T., Sharir, M.: A survey of motion planning and related geometric algorithms. Artif. Intell. 37, 157–169 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Khatib, O.: Real time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–99 (1986)

    Article  MathSciNet  Google Scholar 

  8. Reif, J.H., Wang, H.: Social potential fields: a distributed behavioral control for autonomous robots. Robot. Auton. Syst. 27(3), 171–194 (1999)

    Article  Google Scholar 

  9. Spears, W.M., Spears, D.F.: Physicomimetics: Physics-Based Swarm Intelligence. Springer, Heidelberg (2012)

    Book  Google Scholar 

  10. Tanner, H.G., Kumar, A.: Formation stabilization of multiple agents using decentralized navigation functions. In: Robotics: Science and Systems, pp. 49–56 (2005)

    Google Scholar 

  11. Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8, 501–518 (1992)

    Article  Google Scholar 

  12. Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  13. Denny, J., Amato, N.M.: Toggle PRM: a coordinated mapping of C-free and C-obstacle in arbitrary dimension. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, pp. 297–312. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Yeh, H.Y., Thomas, S., Eppstein, D., Amato, N.M.: UOBPRM: A uniformly distributed obstacle-based PRM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2655–2662 (2012)

    Google Scholar 

  15. Plaku, E., Bekris, K.E., Chen, B.Y., Ladd, A.M., Kavraki, L.E.: Sampling-based roadmap of trees for parallel motion planning. IEEE Trans. Robot. 21(4), 587–608 (2005)

    Article  Google Scholar 

  16. Sun, Z., Hsu, D., Jiang, T., Kurniawati, H., Reif, J.: Narrow passage sampling for probabilistic roadmap planners. IEEE Trans. Robot. 21(6), 1105–1115 (2005)

    Google Scholar 

  17. Boor, V., Overmars, M.H., van der Stappen, A.F.: The Gaussian sampling strategy for probabilistic roadmap planners. In: IEEE International Conference on Robotics and Automation, pp. 1018–1023 (1999)

    Google Scholar 

  18. Pan, J., Chitta, S., Manocha, D.: Faster sample-based motion planning using instance-based learning. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol. 86, pp. 381–396. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Aarno, D., Kragic, D., Christensen, H.I.: Artificial potential biased probabilistic roadmap method. In: IEEE International Conference on Robotics and Automation, pp. 461–466 (2004)

    Google Scholar 

  20. Katz, R., Hutchinson, S.: Efficiently biasing PRMS with passage potentials. In: IEEE International Conference on Robotics and Automation, pp. 889–894 (2006)

    Google Scholar 

  21. Bayazıt, O.B., Lien, J.-M., Amato, N.M.: Swarming behavior using probabilistic roadmap techniques. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 112–125. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Bayazıt, O.B., Lien, J.M., Amato, N.M.: Better group behaviors using rule-based roadmaps. In: International Workshop on Algorithmic Foundations of Robotics, pp. 95–112 (2004)

    Google Scholar 

  23. Harrison, J.F., Vo, C., Lien, J.-M.: Scalable and robust shepherding via deformable shapes. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 218–229. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Krontiris, A., Louis, S., Bekris, K.E.: Multi-level formation roadmaps for collision-free dynamic shape changes with non-holonomic teams. In: IEEE International Conference on Robotics and Automation (2012)

    Google Scholar 

  25. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)

    Google Scholar 

  26. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, MA (2006)

    Book  MATH  Google Scholar 

  27. Wallar, A., Plaku, E.: Source code for CRoPS: combined roadmaps and potentials for swarm path planning (2013). http://aw204.host.cs.st-andrews.ac.uk/CRoPS/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erion Plaku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wallar, A., Plaku, E. (2014). Path Planning for Swarms by Combining Probabilistic Roadmaps and Potential Fields. In: Natraj, A., Cameron, S., Melhuish, C., Witkowski, M. (eds) Towards Autonomous Robotic Systems. TAROS 2013. Lecture Notes in Computer Science(), vol 8069. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43645-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43645-5_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43644-8

  • Online ISBN: 978-3-662-43645-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics