Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

A cognitive architecture is the essential structures and processes of a domain-generic computational cognitive model used for a broad, multiple-level, multiple domain analysis of cognition and behavior. This chapter reviews some of the most popular psychologically-oriented cognitive architectures, namely adaptive control of thought-rational (GlossaryTerm

ACT-R

), Soar, and CLARION. For each cognitive architecture, an overview of the model, some key equations, and a detailed simulation example are presented. The example simulation with GlossaryTerm

ACT-R

is the initial learning of the past tense of irregular verbs in English (developmental psychology), the example simulation with Soar is the well-known missionaries and cannibals problem (problem solving), and the example simulation with CLARION is a complex mine field navigation task (autonomous learning). This presentation is followed by a discussion of how cognitive architectures can be used in multi-agent social simulations. A detailed cognitive social simulation with CLARION is presented to reproduce results from organizational decision-making. The chapter concludes with a discussion of the impact of neural network modeling on cognitive architectures and a comparison of the different models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACS:

action-centered subsystem

ACT-R:

adaptive control of thought-rational

ANOVA:

analysis of variance

DLPFC:

dorsolateral prefrontal cortex

MCS:

meta-cognitive subsystem

MS:

motivational subsystem

NACS:

non-action-centered subsystem

PSCM:

problem-space computational model

RL:

reinforcement learning

VLPFC:

ventrolateral prefrontal cortex

References

  1. A. Newell: Unified Theories of Cognition (Harvard Univ. Press, Cambridge 1990)

    Google Scholar 

  2. S. Roberts, H. Pashler: How persuasive is a good fit? A comment on theory testing, Psychol. Rev. 107, 358–367 (2000)

    Article  Google Scholar 

  3. R. Sun: Desiderata for cognitive architectures, Philos. Psychol. 17, 341–373 (2004)

    Article  Google Scholar 

  4. S. Franklin, F.G. Patterson Jr.: The Lida architecture: Adding new modes of learning to an intelligent, autonomous, software agent, Integr. Design Process Technol. IDPT-2006, San Diego (Society for Design and Process Science, San Diego 2006) p. 8

    Google Scholar 

  5. G.A. Carpenter, S. Grossberg: A massively parallel architecture for a self-organizing neural pattern recognition machine, Comput. Vis. Graph. Image Process. 37, 54–115 (1987)

    Article  MATH  Google Scholar 

  6. P. Langley, J.E. Laird, S. Rogers: Cognitive architectures: Research issues and challenges, Cogn. Syst. Res. 10, 141–160 (2009)

    Article  Google Scholar 

  7. R. Sun, E. Merrill, T. Peterson: From implicit skills to explicit knowledge: A bottom-up model of skill learning, Cogn. Sci. 25, 203–244 (2001)

    Article  Google Scholar 

  8. J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, Y. Qin: An integrated theory of the mind, Psychol. Rev. 111, 1036–1060 (2004)

    Article  Google Scholar 

  9. N.A. Taatgen, J.R. Anderson: Constraints in cognitive architectures. In: The Cambridge Handbook of Computational Psychology, ed. by R. Sun (Cambridge Univ. Press, New York 2008) pp. 170–185

    Chapter  Google Scholar 

  10. J.R. Anderson: The Adaptive Character of Thought (Erlbaum, Hillsdale 1990)

    Google Scholar 

  11. J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, Y. Qin: An integrated theory of the mind, Psychol. Rev. 111, 1037 (2004)

    Article  Google Scholar 

  12. N.A. Taatgen, C. Lebiere, J.R. Anderson: Modeling paradigms in ACT-R. In: Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation, ed. by R. Sun (Cambridge Univ. Press, New York 2006) pp. 29–52

    Google Scholar 

  13. N.A. Taatgen, J.R. Anderson: Why do children learn to say “broke”? A model of learning the past tense without feedback, Cognition 86, 123–155 (2002)

    Article  Google Scholar 

  14. G.F. Marcus, S. Pinker, M. Ullman, M. Hollander, T.J. Rosen, F. Xu: Overregularization in language acquisition, Monogr. Soc. Res. Child Dev. 57, 1–182 (1992)

    Article  Google Scholar 

  15. J.E. Laird, A. Newell, P.S. Rosenbloom: Soar: An architecture for general intelligence, Artif. Intell. 33, 1–64 (1987)

    Article  Google Scholar 

  16. J.F. Lehman, J. Laird, P. Rosenbloom: A Gentle Introduction to Soar, an Architecture for Human Cognition (University of Michigan, Ann Arbor 2006)

    Google Scholar 

  17. R.E. Wray, R.M. Jones: Considering Soar as an agent architecture. In: Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation, ed. by R. Sun (Cambridge Univ. Press, New York 2006) pp. 53–78

    Google Scholar 

  18. J.E. Laird: Extending the Soar cognitive architecture, Proc. 1st Conf. Artif. General Intell. (IOS Press, Amsterdam 2008) pp. 224–235

    Google Scholar 

  19. D.L. Schacter, A.D. Wagner, R.L. Buckner: Memory systems of 1999. In: The Oxford Handbook of Memory, ed. by E. Tulving, F.I.M. Craik (Oxford Univ. Press, New York 2000) pp. 627–643

    Google Scholar 

  20. S. Nason, J.E. Laird: Soar-RL: Integrating reinforcement learning with Soar, Cogn. Syst. Res. 6, 51–59 (2005)

    Article  Google Scholar 

  21. K.R. Scherer: Appraisal considered as a process of multi-level sequential checking. In: Appraisal Processes in Emotion: Theory, Methods, Research, ed. by K.R. Scherer, A. Schor, T. Johnstone (Oxford Univ. Press, New York 2001) pp. 92–120

    Google Scholar 

  22. C. Watkins: Learning from Delayed Rewards (Cambridge Univ., Cambridge 1990)

    Google Scholar 

  23. R. Sun, S. Hélie: Psychologically realistic cognitive agents: Taking human cognition seriously, J. Exp. Theor. Artif. Intell. 25(1), 65–92 (2013)

    Article  Google Scholar 

  24. R. Sun: Duality of the Mind: A Bottom-up Approach Toward Cognition (Lawrence Erlbaum Associates, Mahwah 2002)

    Google Scholar 

  25. R. Sun, T. Peterson: Multi-agent reinforcement learning: Weighting and partitioning, Neural Netw. 12, 127–153 (1999)

    Article  Google Scholar 

  26. L. Hirschfield, S. Gelman (Eds.): Mapping the Mind: Domain Specificity in Cognition and Culture (Cambridge Univ. Press, Cambridge 1994)

    Google Scholar 

  27. R. Michalski: A theory and methodology of inductive learning, Artif. Intell. 20, 111–161 (1983)

    Article  MathSciNet  Google Scholar 

  28. R. Sun, P. Slusarz, C. Terry: The interaction of the explicit and the implicit in skill learning: A dual-process approach, Psychol. Rev. 112, 159–192 (2005)

    Article  Google Scholar 

  29. S. Hélie, R. Sun: Incubation, insight, and creative problem solving: A unified theory and a connectionist model, Psychol. Rev. 117, 994–1024 (2010)

    Article  Google Scholar 

  30. R. Sun: Integrating Rules and Connectionism for Robust Commonsense Reasoning (Wiley, New York 1994)

    MATH  Google Scholar 

  31. F. Toates: Motivational Systems (Cambridge Univ. Press, Cambridge 1986)

    Google Scholar 

  32. R. Sun: Motivational representations within a computational cognitive architecture, Cogn. Comput. 1, 91–103 (2009)

    Article  Google Scholar 

  33. T. Nelson (Ed.): Metacognition: Core Readings (Allyn and Bacon, Boston 1993)

    Google Scholar 

  34. J.D. Smith, W.E. Shields, D.A. Washburn: The comparative psychology of uncertainty monitoring and metacognition, Behav. Brain Sci. 26, 317–373 (2003)

    Google Scholar 

  35. R. Sun, I. Naveh: Simulating organizational decision-making using a cognitively realistic agent model, J. Artif. Soc. Soc. Simul. 7(3) (2004)

    Google Scholar 

  36. K. M. Carley, M. J. Prietula, Z. Lin: Design versus cognition: The interaction of agent cognition and organizational design on organizational performance, J. Artif. Soc. Soc. Simul. 1 (1998)

    Google Scholar 

  37. S. Hélie, J.G. Waldschmidt, F.G. Ashby: Automaticity in rule-based and information-integration categorization, Atten. Percept. Psychophys. 72, 1013–1031 (2010)

    Article  Google Scholar 

  38. S. Hélie, J.L. Roeder, F.G. Ashby: Evidence for cortical automaticity in rule-based categorization, J. Neurosci. 30, 14225–14234 (2010)

    Article  Google Scholar 

  39. J.R. Anderson: The Architecture of Cognition (Harvard Univ. Press, Cambridge 1983)

    Google Scholar 

  40. D. Rumelhart, J. McClelland, The PDP Research Group (Eds.): Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations (MIT Pres, Cambridge 1986)

    Google Scholar 

  41. S. Russell, P. Norvig: Artificial Intelligence: A Modern Approach (Prentice Hall, Upper Saddle River 1995)

    MATH  Google Scholar 

  42. C. Lebiere, J.R. Anderson: A connectionist implementation of the ACT-R production system, Proc. 15th Annu. Conf. Cogn. Sci. Soc. (Lawrence Erlbaum Associates, Hillsdale 1993) pp. 635–640

    Google Scholar 

  43. B. Cho, P.S. Rosenbloom, C.P. Dolan: Neuro-Soar: A neural-network architecture for goal-oriented behavior, Proc. 13th Annu. Conf. Cogn. Sci. Soc. (Lawrence Erlbaum Associates, Hillsdale 1991) pp. 673–677

    Google Scholar 

  44. N. Wilson, R. Sun, R. Mathews: A motivationally-based simulation of performance degradation under pressure, Neural Netw. 22, 502–508 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Hélie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hélie, S., Sun, R. (2015). Cognitive Architectures and Agents. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics