Nothing Special   »   [go: up one dir, main page]

Skip to main content

Analysis of Human Motion Data Using Recurrence Plots and Recurrence Quantification Measures

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Abstract

The authors present exemplary application of recurrence plots and recurrence quantification analysis for the purpose of exploration of experimental time series describing the movements of the hip joint during a few selected assisted rehabilitation exercises maintaining mobility of the hip in case of coxarthrosis. Time series were extracted from motion sequences which were recorded in the Human Motion Laboratory (HML) of the Polish-Japanese Academy of Information Technology in Bytom, Poland by means of the Vicon Motion Kinematics Acquisition and Analysis System. Additionally, some features of a recurrence plot were presented on the basis of the Rabinovich-Fabrikant system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: Recurrence plot of dynamical systems. Europhys. Lett. 4(9), 973–977 (1987)

    Article  Google Scholar 

  2. Webber Jr., C.L., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)

    Google Scholar 

  3. Schmit, J.M., Riley, M.A., Dalvi, A., Sahay, A., Shear, P.K., Shockley, K.D., Pun, R.Y.: Deterministic center of pressure patterns characterize postural instability in Parkinson’s disease. Exp. Brain Res. 168(3), 357–367 (2006)

    Article  Google Scholar 

  4. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E 66(2), 026702 (2002)

    Article  MATH  Google Scholar 

  5. Kurths, J., Marwan, N., Wessel, N.: Recurrence plot based measures of complexity to predict life-threatening cardiac arrhythmias. In: Proceedings of the 16th European Conference on Circuits Theory and Design (ECCTD03), Kraków (2003)

    Google Scholar 

  6. Javorka, M., Trunkvalterova, Z., Tonhajzerova, I., Lazarova, Z., Javorkova, J., Javorka, K.: Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Clin. Physiol. Funct. Imaging 28(5), 326–331 (2008)

    Article  Google Scholar 

  7. Henry, B., Lovell, N., Camacho, F.: Nonlinear dynamics time series analysis. In: Akay, M. (ed.) Nonlinear Biomedical Signal Processing: Dynamic Analysis and Modeling, vol. 2, pp. 1–39. Wiley Online Library, published online (2012)

    Google Scholar 

  8. Marwan, N., Kurths, J.: Cross Recurrence Plots and Their Applications. Mathematical Physics Research at the Cutting Edge. Nova Science Publishers Inc., New York (2004)

    Google Scholar 

  9. Takens, F.: Detecting strange attractor in turbulence. Lect. Notes Math. 898, 366–381 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kugiumtzis, D.: State space reconstruction parameters in the analysis of chaotic time series - the role of the time window length. Phys. D: Nonlinear Phenom. 95(1), 13–28 (1996)

    Article  MATH  Google Scholar 

  11. Zbilut, J.P., Webber Jr., C.: Recurrence quantification analysis. In: Wiley Encyclopedia of Biomedical Engineering, Wiley (2006). doi:10.1002/9780471740360.edb1355

  12. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  13. Schinkel, S., Dimigen, O., Marwan, N.: Selection of recurrence threshold for signal detection. Eur. Phys. J. Spec. Top. 164, 45–53. Springer (2008)

    Google Scholar 

  14. Marwan, N.: How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcat. Chaos, 21(4), 1003–1017. World Scientific Publishing Company (2011)

    Google Scholar 

  15. Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  16. Danca, M.-F., Romera, M.: Algorithm for control and anticontrol of chaos in continuous-time dynamical systems. Dyn. Continuous Discrete Impulsive Syst. Ser. B: Appl. Algorithms 15, 155–164 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the following projects: UOD-DEM-1-183/001 “Intelligent video analysis system for behavior and event recognition in surveillance networks" from the National Centre for Research and Development and BK-263/2015 “Modern problems of graphics, video and computer simulation".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Josiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Josiński, H., Michalczuk, A., Mucha, R., Świtoński, A., Szczȩsna, A., Wojciechowski, K. (2016). Analysis of Human Motion Data Using Recurrence Plots and Recurrence Quantification Measures. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9622. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49390-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49390-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49389-2

  • Online ISBN: 978-3-662-49390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics