Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Design and Implementation of Geographic Information Storage System Based on the Cloud Platform

  • Conference paper
  • First Online:
Geo-Informatics in Resource Management and Sustainable Ecosystem (GRMSE 2015)

Abstract

Faced with the status in big data era of information explosion, the conventional geographic information system can no longer meet the demands of storage and processing with a sea of data. The cloud computing as with ultra-large-scale server and high versatility and reliability of the new generation service model, just to meet the future needs of GIS. The paper design and implement the Geographic Information Storage System with Hadoop. The thesis has the following components: The brief analysis of the Hadoop implementation of the advantages of geographic information systems and the shortcomings of conventional GIS. Analysing the process of image processing and storage in Hadoop and conventional GIS to explore the suitability of the geographic information storage system built in Hadoop. The efficient image storage on HDFS cutting and generate image pyramid data for a large graphic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Chuvieco, E., Congalton, R.G.: Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens. Environ. 29(2), 147–159 (1989)

    Article  Google Scholar 

  2. Li, Z., Cheng, T.: A multiscale approach for spatiotemporal outlier detection. Trans. GIS 10(2), 253–263 (2006)

    Article  Google Scholar 

  3. Wu, H.: Application of GIS in Meteorology. Meteorol. Mon. (2010)

    Google Scholar 

  4. Yu, H.-L., Wu, L., Liu, Y., Li, D.-J., Liu, L.-P.: A study of integration between GIS and GIS-based model based on web services. Acta Geod. et Cartographic Sin. 35(2), 153–159 (2006)

    Google Scholar 

  5. Tveito, O.E.: Applications of Spatial Interpolation of Climatological and Meteorological Elements by the Use of Geographical Information Systems (2006)

    Google Scholar 

  6. Dobesch, H., Dumolard, P., Dyras, L.: Spatial Interpolation for Climate Data: The Use of GIS in Climatology and Meteorology. Wiley-ISTE, Hoboken (2007)

    Google Scholar 

  7. Boss, G., Malladi, P., Quan, D., et al.: Cloud computing. IBM white paper, 1369 (2007)

    Google Scholar 

  8. Wang, Y., Wang, S.: Research and implementation on spatial data storage and operation based on Hadoop platform. In: 2010 Second lITA International Conference on Geoscience and Remote Sensing, pp. 275–279

    Google Scholar 

  9. Li, X.F., Cheng, C.Q., Gong, J.Y., Guan, L.: Review of data storage and management technologies for massive remote sensing data. Sci. China (Technol. Sci.) 54(12), 3220–3232 (2011)

    Google Scholar 

  10. Yang, H.C., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-Reduce-Merge: simplified relational data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD Int’l Conference on Management of Data, pp. 1029–1040. ACM Press, New York (2007)

    Google Scholar 

  11. Agrawal, D., Abbadi, A.E., Nishimura, S., Das, S.: Design and implementation of an elastic data infrastructure for cloud-scale location services. Distrib. Parallel Databases 31(2), 289–319 (2013)

    Google Scholar 

  12. Huang, Q., Nebert, D., Raskin, R., Xu, Y., Bambacus, M., Fay, D., Yang, C., Goodchild, M.: Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int. J. Digit. Earth 4(4), 305–329 (2011)

    Article  Google Scholar 

  13. Khaja, R.N.D.R., Kota, V.R., Almeer: Hybrid cloud framework for object storage based geo spatial remote sensing data processing. Int. J. Eng. Sci. Res. Technol. 3(12), 449–454 (2014)

    Google Scholar 

  14. Almeer, M.H.: Cloud Hadoop map reduce for remote sensing image analysis. J. Emerg. Trends Comput. Inf. Sci. 3(4), 637–644 (2012)

    Google Scholar 

  15. Yang, C., Zhang, X., Zhong, C., Liu, C., Pei, J., Ramamohanarao, K., Chen, J.: A spatiotemporal compression based approach for efficient big data processing on cloud. J. Comput. Syst. Sci. 80(8), 1563–1583 (2014). ISSN:0022-0000, doi:10.1016/j.jcss.2014.04.022

  16. Kang, J., Zhenhong, Li, X.: The framework of remote sensing image map service on Hadoop. In: Information Technology and Computer Science—Proceedings of 2012 National Conference on Information Technology and Computer Science, 16 November 2012

    Google Scholar 

Download references

Acknowledgement

This research is supported in part by National Nature Science Foundation of China No. 61440054, Fundamental Research Funds for the Central Universities of China No. 216274213, and Nature Science Foundation of Hubei, China No. 2014CFA048. Outstanding Academic Talents Startup Funds of Wuhan University, No. 216-410100003.S

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z. et al. (2016). The Design and Implementation of Geographic Information Storage System Based on the Cloud Platform. In: Bian, F., Xie, Y. (eds) Geo-Informatics in Resource Management and Sustainable Ecosystem. GRMSE 2015. Communications in Computer and Information Science, vol 569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49155-3_95

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49155-3_95

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49154-6

  • Online ISBN: 978-3-662-49155-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics