Abstract
Distributed computing environments are nowadays composed of many heterogeneous computers able to work cooperatively. Despite this, the most of the work in parallel metaheuristics assumes a homogeneous hardware as the underlying platform. In this work we provide a methodology that enables a distributed genetic algorithm to be customized for higher efficiency on any available hardware resources with different computing power, all of them collaborating to solve the same problem. We analyze the impact of heterogeneity in the resulting performance of a parallel metaheuristic and also its efficiency in time. Our conclusion is that the solution quality is comparable to that achieved by using a theoretically faster homogeneous platform, the traditional environment to execute this kind of algorithms, but an interesting finding is that those solutions are found with a lower numerical effort and even in lower running times in some cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Inf. Process. Lett. 82(1), 7–13 (2002). Elsevier
Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley, New Jersey (2005)
Alba, E., Nebro, A.J., Troya, J.M.: Heterogeneous computing and parallel genetic algorithms. J. Parallel Distrib. Comput. 62, 1362–1385 (2002)
Alba, E., Troya, J.M.: Analyzing synchronous and asynchronous parallel distributed genetic algorithms. Future Gener. Comput. Syst. 17(4), 451–465 (2001)
Domínguez, J., Alba, E.: A methodology for comparing the execution time of metaheuristics running on different hardware. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 1–12. Springer, Heidelberg (2012)
Baugh, J., Kumar, S.: Asynchronous genetic algorithms for heterogeneous networks using coarse-grained dataflow. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 730–741. Springer, Heidelberg (2003)
Bazterra, V.E., Cuma, M., Ferraro, M.B., Facelli, J.C.: A general framework to understand parallel performance in heterogeneous clusters: analysis of a new adaptive parallel genetic algorithm. J. Parallel Distrib. Comput. 65(1), 48–57 (2005)
Branke, J., Kamper, A., Schmeck, H.: Distribution of evolutionary algorithms in heterogeneous networks. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 923–934. Springer, Heidelberg (2004)
Chong, F.: Java based distributed genetic programming on the internet. Technical report, School of Computer Science, University of Birmingham (1999)
Curnow, H.J., Wichmann, B.A.: A synthetic benchmark. Comput. J. 19(1), 43–49 (1976)
Dominguez, J., Alba, E.: Ethane: A heterogeneous parallel search algorithm for heterogeneous platforms. In: DECIE 2011 (2011)
Dominguez, J., Alba, E.: Dealing with hardware heterogeneity: a new parallel search model. Nat. Comput. 12(2), 179–193 (2013)
Dongarra, J.: Performance of various computers using standard linear equations software in a fortran environment. Simulation 49(2), 51–62 (1987)
Alba, E., et al.: MALLBA: a library of skeletons for combinatorial optimisation. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 927–932. Springer, Heidelberg (2002)
García-Arenas, M., Merelo, J., Castillo, P., Laredo, J., Romero, G., Mora, A.: Using free cloud storage services for distributed evolutionary algorithms. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1603–1610. ACM, New York (2011)
Garey, M.R., Johnson, D.S.: COmputers and Intractability: a Guide to the Theory of NP-Completeness. Freeman, New York (1979)
Gong, Y., Nakamura, M., Tamaki, S.: Parallel genetic algorithms on line topology of heterogeneous computing resources. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 1447–1454 (2005)
Lim, D., Ong, Y.-S., Jin, Y., Sendhoff, B., Lee, B.-S.: Efficient hierarchical parallel genetic algorithms using grid computing. Future Gener. Comput. Syst. 23(4), 658–670 (2007)
Liu, P., Lau, F., Lewis, M.J., Wang, C.: A new asynchronous parallel evolutionary algorithm for function optimization. In: Merelo Guervós, J.J., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 401–410. Springer, Heidelberg (2002)
Luque, G., Alba, E. (eds.): Parallel Genetic Algorithms: Theory and Real World Applications. SCI, vol. 367. Springer, Heidelberg (2011)
McMahon, F.H.: The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range. Lawrence Livermore National Laboratory (1986)
Meri, K., Arenas, M., Mora, A., Merelo, J., Castillo, P., Garca-Snchez, P., Laredo, J.: Cloud-based evolutionary algorithms: An algorithmic study. Natural Comput. 12(2), 135–147 (2013)
Mostaghim, S., Branke, J., Lewis, A., Schmeck, H.: Parallel multi-objective optimization using master-slave model on heterogeneous resources. In: IEEE Congress on Evolutionary Computation, CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 1981–1987 (2008)
Pisinger, D.: A minimal algorithm for the 0–1 knapsack problem. Oper. Res. 45, 758–767 (1997)
Pisinger, D.: Core problems in knapsack algorithms. Oper. Res. 47, 570–575 (1999)
Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32, 2271–2282 (2005)
Tanese, R.: Distributed genetic algorithms. In: Proceedings of the Third International Conference on Genetic Algorithms, pp. 434–439 (1989)
Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Commun. ACM 27(10), 1013–1030 (1984)
Acknowledgments
We acknowledge the UNLPam, the ANPCYT, CONICET and PICTO-UNLPam-0278 in Argentina from which Dr. Salto receives regular support. The work of Prof. Alba has been partially funded by the University of Málaga UMA/FEDER FC14-TIC36, programa de fortalecimiento de las capacidades de I+D+I en las universidades 2014–2015, de la Consejería y Economía, Innovación, Ciencia y Empleo, with European FEDER, and also by the UMA Project 8.06/5.47.4142 with the VSB-Technical University of Ostrava (CR). Finally, we acknowledge the funding by the Spanish MINECO project TIN2014-57341-R (http://moveon.lcc.uma.es).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Salto, C., Alba, E. (2015). Adapting Distributed Evolutionary Algorithms to Heterogeneous Hardware. In: Nguyen, N., Kowalczyk, R., Xhafa, F. (eds) Transactions on Computational Collective Intelligence XIX . Lecture Notes in Computer Science(), vol 9380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49017-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-662-49017-4_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49016-7
Online ISBN: 978-3-662-49017-4
eBook Packages: Computer ScienceComputer Science (R0)