Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fine Grained SMT Proofs for the Theory of Fixed-Width Bit-Vectors

  • Conference paper
  • First Online:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9450))

Included in the following conference series:

Abstract

Many high-level verification tools rely on SMT solvers to efficiently discharge complex verification conditions. Some applications require more than just a yes/no answer from the solver. For satisfiable quantifier-free problems, a satisfying assignment is a natural artifact. In the unsatisfiable case, an externally checkable proof can serve as a certificate of correctness and can be mined to gain additional insight into the problem. We present a method of encoding and checking SMT-generated proofs for the quantifier-free theory of fixed-width bit-vectors. Proof generation and checking for this theory poses several challenges, especially for proofs based on reductions to propositional logic. Such reductions can result in large resolution subproofs in addition to requiring a proof that the reduction itself is correct. We describe a fine-grained proof system formalized in the LFSC framework that addresses some of these challenges with the use of computational side-conditions. We report results using a proof-producing version of the CVC4 SMT solver on unsatisfiable quantifier-free bit-vector benchmarks from the SMT-LIB benchmark library.

Work partially supported by DARPA award FA8750-13-2-0241 and ERC project 280053 (CPROVER).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For example, the CVC4 code base consists of over 250 K lines of C++ code.

  2. 2.

    For simplicity, we will ignore here the issue of whether the background theory is the combination of several more basic theories or not.

  3. 3.

    This step typically also includes the application of simplifying rewrite rules, which we ignore in this paper. Extending the approach here to include the many pre-processing rewrite rules used in real solvers is tedious but straightforward.

  4. 4.

    Intuitively, an LF expression of dependent type \(\varPi \varphi {:}\mathsf {form}.\,\mathsf {holds}(\varphi )\) represents a proof that the formula \(\varphi \) holds.

  5. 5.

    Recall that \( bbAtom (a)\) is a propositional formula encoding the semantics of atom a, and contains \(\mathsf {bitOf} _i\) applications on the bit-vector variables in a.

  6. 6.

    For details on how to use LFSC to encode proofs for CNF conversion, see [28].

  7. 7.

    For simplicity, \(\mathsf {introUnit}\) only introduces literals in positive polarity. In reality, we also use a dual version that introduces literals in negative polarity.

  8. 8.

    Experiments were run on the queue \(\mathsf {all.q}\) consisting of Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40 GHz machines with 268 GB of memory.

  9. 9.

    CVC4 solved 26001 problems in that division compared to 26260 problems solved by the winning solver, Boolector [10].

  10. 10.

    Overhead in each column is measured by comparing the time taken to solve only those problems solved by both the default and the column configuration.

References

  1. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Barrett, C., de Moura, L., Fontaine, P.: Proofs in satisfiability modulo theories. In: All about Proofs, Proofs for All, pp. 23–44 (2015)

    Google Scholar 

  3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2015). www.SMT-LIB.org

  4. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas by incremental translation to SAT. In: Conference on Computer Aided Verification (2002)

    Google Scholar 

  5. Besson, F., Cornilleau, P.-E., Pichardie, D.: Modular SMT proofs for fast reflexive checking inside Coq. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 151–166. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT solvers. J. Autom. Reason. 51(1), 109–128 (2013)

    Article  Google Scholar 

  7. Böhme, S., Fox, A.C.J., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector proofs in HOL4 and Isabelle/HOL. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 183–198. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Bouton, T., Caminha, D., De Oliveira, B., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Conference on Automated Deduction (2009)

    Google Scholar 

  10. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 174–177. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Chen, J., Chugh, R., Swamy, N.: Type-preserving compilation of end-to-end verification of security enforcement. In: Programming Language Design and Implementation (2010)

    Google Scholar 

  12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.F.: Expressiveness + automation + soundness: towards combining SMT solvers and interactive proof assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 167–181. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Ge, Y., Barrett, C.: Proof translation and SMT-LIB benchmark certification: a preliminary report. In: Workshop on Satisfiability Modulo Theories (2008)

    Google Scholar 

  15. Griggio, A.: Effective word-level interpolation for software verification. In: Formal Methods in Computer-Aided Design (2011)

    Google Scholar 

  16. Hadarean, L., Bansal, K., Jovanović, D., Barrett, C., Tinelli, C.: A tale of two solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 680–695. Springer, Heidelberg (2014)

    Google Scholar 

  17. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. Assoc. Comput. Mach. 40(1), 143–184 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: SeL4: formal verification of an OS kernel. In: Symposium on Operating Systems Principles (2009)

    Google Scholar 

  19. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: Principles of Programming Languages (2006)

    Google Scholar 

  20. S. Lescuyer and S. Conchon. A Reflexive Formalization of a SAT Solver in Coq. In Theorem Proving in Higher Order Logics, 2008

    Google Scholar 

  21. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: a case study combining HOL-Light and CVC lite. In: Pragmatics of Decision Procedures in Automated Reasoning (PDPAR 2005) (2006)

    Google Scholar 

  22. Moskal, M.: Rocket-fast proof checking for SMT solvers. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 486–500. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract davis-putnam-logemann-loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  24. Oe, D., Reynolds, A., Stump, A.: Fast and flexible proof checking for SMT. In: Workshop on Satisfiability Modulo Theories (2009)

    Google Scholar 

  25. Reynolds, A., Hadarean, L., Tinelli, C., Ge, Y., Stump, A., Barrett, C.: Comparing proof systems for linear real arithmetic with LFSC. In: Workshop on Satisfiability Modulo Theories (2010)

    Google Scholar 

  26. Reynolds, A., Tinelli, C., Hadarean, L.: Certified interpolant generation for EUF. In: Workshop on Satisfiability Modulo Theories (2011)

    Google Scholar 

  27. Robinson, J.A.: Logic: Form and Function: The Mechanization of Deductive Reasoning. Elsevier, New York (1980)

    Google Scholar 

  28. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking using a logical framework. Formal Methods Syst. Des. 42(1), 91–118 (2013)

    Article  MATH  Google Scholar 

  29. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 367–373. Springer, Heidelberg (2014)

    Google Scholar 

  30. Van, A.: Gelder. http://users.soe.ucsc.edu/avg/ProofChecker/ProofChecker-fileformat.txt

  31. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liana Hadarean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hadarean, L., Barrett, C., Reynolds, A., Tinelli, C., Deters, M. (2015). Fine Grained SMT Proofs for the Theory of Fixed-Width Bit-Vectors. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2015. Lecture Notes in Computer Science(), vol 9450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48899-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48899-7_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48898-0

  • Online ISBN: 978-3-662-48899-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics