Abstract
We investigate some model and proof theoretic aspects of sabotage modal logic. The first contribution is to prove a characterization theorem for sabotage modal logic as the fragment of first-order logic which is invariant with respect to a suitably defined notion of bisimulation (called sabotage bisimulation). The second contribution is to provide a sound and complete tableau method for sabotage modal logic. We also chart a number of open research questions concerning sabotage modal logic, aiming at integrating it within the current landscape of logics of model update.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking results. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 142–153. Springer, Heidelberg (2012)
Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic Journal of the IGPL 22(2), 309–332 (2014)
Aucher, G., Balbiani, P., Fariñas del Cerro, L., Herzig, A.: Global and local graph modifiers. Electronic Notes in Theoretical Computer Science 231, 293–307 (2009)
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)
van Benthem, J.: Modal Logic and Classical Logic. Monographs in Philosophical Logic and Formal Linguistics. Bibliopolis (1983)
van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005)
van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press (2011)
van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. Journal of Applied Non-Classical Logic 17(2) (2007)
Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic and the Foundations of Mathematics. North-Holland (1973)
van Ditmarsch, H., Kooi, B., van der Hoek, W.: Dynamic Epistemic Logic. Synthese Library Series, vol. 337. Springer (2007)
Gierasimczuk, N., Kurzen, L., Velázquez-Quesada, F.R.: Learning and teaching as a game: a sabotage approach. In: He, X., Horty, J., Pacuit, E. (eds.) LORI 2009. LNCS (LNAI), vol. 5834, pp. 119–132. Springer, Heidelberg (2009)
Gruener, S., Radmacher, F., Thomas, W.: Connectivity games over dynamic networks. Theoretical Computer Science 498, 46–65 (2013)
Kooi, B., Renne, B.: Arrow update logic. Review of Symbolic Logic 4(4) (2011)
Löding, C., Rohde, P.: Solving the sabotage game is PSPACE-hard. Technical report, Department of Computer Science RWTH Aachen (2003)
Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 302–313. Springer, Heidelberg (2003)
Radmacher, F., Thomas, W.: A game theoretic approach to the analysis of dynamic networks. Electronic Notes in Theoretical Computer Science 200(2), 21–37 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aucher, G., van Benthem, J., Grossi, D. (2015). Sabotage Modal Logic: Some Model and Proof Theoretic Aspects. In: van der Hoek, W., Holliday, W., Wang, Wf. (eds) Logic, Rationality, and Interaction. LORI 2015. Lecture Notes in Computer Science(), vol 9394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48561-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-662-48561-3_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48560-6
Online ISBN: 978-3-662-48561-3
eBook Packages: Computer ScienceComputer Science (R0)