Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sabotage Modal Logic: Some Model and Proof Theoretic Aspects

  • Conference paper
  • First Online:
Logic, Rationality, and Interaction (LORI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9394))

Included in the following conference series:

Abstract

We investigate some model and proof theoretic aspects of sabotage modal logic. The first contribution is to prove a characterization theorem for sabotage modal logic as the fragment of first-order logic which is invariant with respect to a suitably defined notion of bisimulation (called sabotage bisimulation). The second contribution is to provide a sound and complete tableau method for sabotage modal logic. We also chart a number of open research questions concerning sabotage modal logic, aiming at integrating it within the current landscape of logics of model update.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking results. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 142–153. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic Journal of the IGPL 22(2), 309–332 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aucher, G., Balbiani, P., Fariñas del Cerro, L., Herzig, A.: Global and local graph modifiers. Electronic Notes in Theoretical Computer Science 231, 293–307 (2009)

    Article  MathSciNet  Google Scholar 

  4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  5. van Benthem, J.: Modal Logic and Classical Logic. Monographs in Philosophical Logic and Formal Linguistics. Bibliopolis (1983)

    Google Scholar 

  6. van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press (2011)

    Google Scholar 

  8. van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. Journal of Applied Non-Classical Logic 17(2) (2007)

    Google Scholar 

  9. Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic and the Foundations of Mathematics. North-Holland (1973)

    Google Scholar 

  10. van Ditmarsch, H., Kooi, B., van der Hoek, W.: Dynamic Epistemic Logic. Synthese Library Series, vol. 337. Springer (2007)

    Google Scholar 

  11. Gierasimczuk, N., Kurzen, L., Velázquez-Quesada, F.R.: Learning and teaching as a game: a sabotage approach. In: He, X., Horty, J., Pacuit, E. (eds.) LORI 2009. LNCS (LNAI), vol. 5834, pp. 119–132. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Gruener, S., Radmacher, F., Thomas, W.: Connectivity games over dynamic networks. Theoretical Computer Science 498, 46–65 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kooi, B., Renne, B.: Arrow update logic. Review of Symbolic Logic 4(4) (2011)

    Google Scholar 

  14. Löding, C., Rohde, P.: Solving the sabotage game is PSPACE-hard. Technical report, Department of Computer Science RWTH Aachen (2003)

    Google Scholar 

  15. Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 302–313. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Radmacher, F., Thomas, W.: A game theoretic approach to the analysis of dynamic networks. Electronic Notes in Theoretical Computer Science 200(2), 21–37 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Aucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aucher, G., van Benthem, J., Grossi, D. (2015). Sabotage Modal Logic: Some Model and Proof Theoretic Aspects. In: van der Hoek, W., Holliday, W., Wang, Wf. (eds) Logic, Rationality, and Interaction. LORI 2015. Lecture Notes in Computer Science(), vol 9394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48561-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48561-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48560-6

  • Online ISBN: 978-3-662-48561-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics