Nothing Special   »   [go: up one dir, main page]

Skip to main content

Polymatroid Prophet Inequalities

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

Abstract

Prophet inequalities bound the reward of an online algorithm—or gambler—relative to the optimum offline algorithm—the prophet—in settings that involve making selections from a sequence of elements whose order is chosen adversarially but whose weights are random. The goal is to maximize total weight.

We consider the problem of choosing quantities of each element subject to polymatroid constraints when the weights are arbitrary concave functions. We present an online algorithm for this problem that does at least half as well as the optimum offline algorithm. This is best possible, as even in the case where a single number has to be picked no online algorithm can do better.

An important application of our result is in algorithmic mechanism design, where it leads to novel, truthful mechanisms that, under a monotone hazard rate (MHR) assumption on the conditional distributions of marginal weights, achieve a constant-factor approximation to the optimal revenue for this multi-parameter setting. Problems to which this result applies arise, for example, in the context of Video-on-Demand, Sponsored Search, or Bandwidth Markets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alaei, S.: Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buyers. In: Proc. of 52nd FOCS, pp. 512–521 (2011)

    Google Scholar 

  2. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: Proc. of 18th SODA, pp. 434–443 (2007)

    Google Scholar 

  3. Babaioff, M., Lucier, B., Nisan, N.: Bertrand networks. In: Proc. of 14th EC, pp. 33–34 (2013)

    Google Scholar 

  4. Bikhchandani, S., de Vries, S., Schummer, J., Vohra, R.V.: An ascending vickrey auction for selling bases of a matroid. Operations Research 59(2), 400–413 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism design and sequential posted pricing. In: Proc. of 41th STOC, pp. 311–320 (2010)

    Google Scholar 

  6. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem: The benefit of adaptivity. In: Proc. of 45th FOCS, pp. 208–217 (2004)

    Google Scholar 

  7. Dhangwatnotai, P., Roughgarden, T., Yan, Q.: Revenue maximization with a single sample. Games and Economic Behavior (2014) (in press)

    Google Scholar 

  8. Dütting, P., Kleinberg, R.: Polymatroid prophet inequalities (2013). http://arxiv.org/abs/1307.5299

  9. Feldman, M., Gravin, N., Lucier, B.: Combinatorial auctions via posted prices. In: Proc. of 26th SODA, pp. 123–135 (2015)

    Google Scholar 

  10. Goel, G., Mirrokni, V.S., Paes Leme, R.: Polyhedral clinching auctions and the adwords polytope. In: Proc. of 44th STOC, pp. 107–122 (2012)

    Google Scholar 

  11. Guha, S., Munagala, K.: Multi-armed bandits with metric switching costs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 496–507. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Guha, S., Munagala, K., Shi, P.: Approximation algorithms for restless bandit problems. Journal of the ACM 58, 3:1–3:50 (2010)

    Google Scholar 

  13. Hajiaghayi, M., Kleinberg, R., Sandholm, T.W.: Automated mechanism design and prophet inequalities. In: Proc. of 22nd AAAI, pp. 58–65 (2007)

    Google Scholar 

  14. Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities. In: Proc. of 44th STOC, pp. 123–136 (2012)

    Google Scholar 

  15. Krengel, U., Sucheston, L.: Semiamarts and finite values. Bulletin of the American Mathematical Society 83, 745–747 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krengel, U., Sucheston, L.: On semiamarts, amarts, and processes with finite value. Advances in Probability and Related Topics 4, 197–266 (1978)

    MathSciNet  Google Scholar 

  17. Myerson, R.: Optimal auction design. Mathematics of Operations Research 6, 58–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Samuel-Cahn, E.: Comparison of threshold stop rules and maximum for independent nonnegative random variables. Annals of Probability 12, 1213–1216 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer (2002)

    Google Scholar 

  20. Tse, D.N.C., Hanly, S.V.: Multiaccess fading channels-part I: Polymatroid structure, optimal resource allocation and throughput capacities. Transactions on Information Theory 44, 2796–2815 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Dütting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dütting, P., Kleinberg, R. (2015). Polymatroid Prophet Inequalities. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics