Nothing Special   »   [go: up one dir, main page]

Skip to main content

Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

Given a Boolean formula and a satisfying assignment, a flip is an operation that changes the value of a variable in the assignment so that the resulting assignment remains satisfying. We study the problem of computing the shortest sequence of flips (if one exists) that transforms a given satisfying assignment \(s\) to another satisfying assignment \(t\) of the Boolean formula. Earlier work characterized the complexity of deciding the existence of a sequence of flips between two given satisfying assignments using Schaefer’s framework for classification of Boolean formulas. We build on it to provide a trichotomy for the complexity of finding the shortest sequence of flips and show that it is either in P, NP-complete, or PSPACE-complete. Our result adds to the small set of complexity results known for shortest reconfiguration sequence problems by providing an example where the shortest sequence can be found in polynomial time even though the path flips variables that have the same value in both \(s\) and \(t\). This is in contrast to all reconfiguration problems studied so far, where polynomial time algorithms for computing the shortest path were known only for cases where the path modified the symmetric difference only. Our proof uses Birkhoff’s representation theorem on a set system that we show to be a distributive lattice. The technique is insightful and can perhaps be used for other reconfiguration problems as well.

A.E. Mouawad and N. Nishimura—Research supported by the Natural Science and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aichholzer, O., Mulzer, W., Pilz, A.: Flip distance between triangulations of a simple polygon is NP-complete. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 13–24. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn. Cambridge University Press, New York, NY, USA (2009)

    Book  Google Scholar 

  3. Birkhoff, G.: Rings of sets. Duke Mathematical Journal 3(3), 443–454 (1937)

    Article  MathSciNet  Google Scholar 

  4. Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs. In: Proceedings of the 7th Latin-American Algorithms, Graphs, and Optimization Symposium (LAGOS) (2013)

    Google Scholar 

  5. Bose, P., Lubiw, A., Pathak, V., Verdonschot, S.: Flipping edge-labelled triangulations (2013). CoRR, abs/1310.1166

  6. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Mathematics 308(56), 913–919 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of boolean constraint satisfaction problems. SIAM (2001)

    Google Scholar 

  8. Culik II, K., Wood, D.: A note on some tree similarity measures. Inform. Process. Lett. 15(1), 39–42 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eppstein, D., Falmagne, J.-C., Ovchinnikov, S.: Media theory - interdisciplinary applied mathematics. Springer (2008)

    Google Scholar 

  10. Fricke, G., Hedetniemi, S.M., Hedetniemi, S.T., Hutson, K.R.: \(\gamma \)-Graphs of Graphs. Discussiones Mathematicae Graph Theory 31(3), 517–531 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean satisfiability: computational and structural dichotomies. SIAM Journal on Computing 38(6), 2330–2355 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer Science 412(12–14), 1054–1065 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discrete Applied Mathematics 160(15), 2199–2207 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

    Article  MATH  Google Scholar 

  15. Lawson, C.L.: Transforming triangulations. Discrete Mathematics 3(4), 365–372 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. A. E. Mouawad, N. Nishimura, and V. Raman. Vertex cover reconfiguration and beyond, 2014. arXiv:1402.4926

  17. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226. New York, NY, ACM (1978)

    Google Scholar 

  19. Schwerdtfeger, K.W.: A computational trichotomy for connectivity of boolean satisfiability (2013). CoRR, abs/1312.4524

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayak Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V. (2015). Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_80

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics