Nothing Special   »   [go: up one dir, main page]

Skip to main content

Amplification of One-Way Information Complexity via Codes and Noise Sensitivity

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

  • 2679 Accesses

Abstract

We show a new connection between the information complexity of one-way communication problems under product distributions and a relaxed notion of list-decodable codes. As a consequence, we obtain a characterization of the information complexity of one-way problems under product distributions for any error rate based on covering numbers. This generalizes the characterization via VC dimension for constant error rates given by Kremer, Nisan, and Ron (CCC, 1999). It also provides an exponential improvement in the error rate, yielding tight bounds for a number of problems. In addition, our framework gives a new technique for analyzing the complexity of composition (e.g., XOR and OR) of one-way communication problems, connecting the difficulty of these problems to the noise sensitivity of the composing function. Using this connection, we strengthen the lower bounds obtained by Molinaro, Woodruff and Yaroslavtsev (SODA, 2013) for several problems in the distributed and streaming models, obtaining optimal lower bounds for finding the approximate closest pair of a set of points and the approximate largest entry in a matrix product. Finally, to illustrate the utility and simplicity of our framework, we show how it unifies proofs of existing \(1\)-way lower bounds for sparse set disjointness, the indexing problem, the greater than function under product distributions, and the gap-Hamming problem under the uniform distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablayev, F.M.: Lower bounds for one-way probabilistic communication complexity and their application to space complexity. Theor. Comput. Sci. 157(2), 139–159 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. J. Comput. Syst. Sci. 68(4), 702–732 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buhrman, H., García-Soriano, D., Matsliah, A., de Wolf, R.: The non-adaptive query complexity of testing k-parities. Chicago J. Theor. Comput. Sci. (2013)

    Google Scholar 

  5. Cover, T.M., Thomas, J.A.: Elements of information theory (2. ed.). Wiley (2006)

    Google Scholar 

  6. Dasgupta, Anirban, Kumar, Ravi, Sivakumar, D.: Sparse and lopsided set disjointness via information theory. In: Gupta, Anupam, Jansen, Klaus, Rolim, José, Servedio, Rocco (eds.) APPROX 2012 and RANDOM 2012. LNCS, vol. 7408, pp. 517–528. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Dudley, R.M.: Central limit theorems for empirical measures. The Annals of Probability 6(6), 899–929 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Haussler, D.: Decision theoretic generalizations of the PAC model for neural net and other learning applications. Inform. Comput. 100(1), 78–150 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jayram, T.S., Woodruff, D.P.: Optimal bounds for johnson-lindenstrauss transforms and streaming problems with sub-constant error. In: SODA (2011)

    Google Scholar 

  10. Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication complexity. Computational Complexity, pp. 21–49 (1999)

    Google Scholar 

  11. Lee, T., Shraibman, A.: Lower bounds in communication complexity. Foundations and Trends in Theoretical Computer Science 3(4), 263–399 (2009)

    Article  MathSciNet  Google Scholar 

  12. Lee, T., Zhang, S.: Composition theorem in communication complexity. In: ICALP (2010)

    Google Scholar 

  13. Molinaro, M., Woodruff, D.P., Yaroslavtsev, G.: Beating the direct sum theorem in communication complexity with implications for sketching. In: SODA (2013)

    Google Scholar 

  14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, New York (1995)

    Book  MATH  Google Scholar 

  15. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends Theor. Comput. Sci. 1(2), 117–236 (2005)

    Article  MathSciNet  Google Scholar 

  16. Newman, I., Szegedy, M.: Public vs. private coin flips in one round communication games (extended abstract). In: STOC (1996)

    Google Scholar 

  17. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials. Computational Complexity 4, 301–313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press (2014)

    Google Scholar 

  19. Papadimitriou, C.H., Sipser, M.: Communication complexity. J. Comput. Syst. Sci. 28(2), 260–269 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Saglam, M., Tardos, G.: On the communication complexity of sparse set disjointness and exists-equal problems. In: FOCS (2013)

    Google Scholar 

  21. Sherstov, A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Woodruff, D.P.: The average-case complexity of counting distinct elements. In: ICDT (2009)

    Google Scholar 

  23. Yao, A.C.: Lower bounds by probabilistic arguments (extended abstract). In: FOCS (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Molinaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Molinaro, M., Woodruff, D.P., Yaroslavtsev, G. (2015). Amplification of One-Way Information Complexity via Codes and Noise Sensitivity. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_78

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics