Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Understanding the Smoothed Approximation Ratio of the 2-Opt Heuristic

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

The 2-Opt heuristic is a very simple, easy-to-implement local search heuristic for the traveling salesman problem. While it usually provides good approximations to the optimal tour in experiments, its worst-case performance is poor.

In an attempt to explain the approximation performance of 2-Opt, we analyze the smoothed approximation ratio of 2-Opt. We obtain a bound of \(O(\log (1/\sigma ))\) for the smoothed approximation ratio of 2-Opt. As a lower bound, we prove that the worst-case lower bound of \(\Omega (\frac{\log n}{\log \log n})\) for the approximation ratio holds for \(\sigma = O(1/\sqrt{n})\).

Our main technical novelty is that, different from existing smoothed analyses, we do not separately analyze objective values of the global and the local optimum on all inputs, but simultaneously bound them on the same input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arthur, D., Manthey, B., Röglin, H.: Smoothed analysis of the \(k\)-means method. Journal of the ACM 58(5) (2011)

    Google Scholar 

  3. Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an application to the \(k\)-means method. SIAM J. Comp. 39(2), 766–782 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bläser, M., Manthey, B., Rao, B.V.R.: Smoothed analysis of partitioning algorithms for Euclidean functionals. Algorithmica 66(2), 397–418 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brunsch, T., Röglin, H., Rutten, C., Vredeveld, T.: Smoothed performance guarantees for local search. Mathematical Programming 146(1–2), 185–218 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chandra, B., Karloff, H., Tovey, C.: New results on the old \(k\)-opt algorithm for the traveling salesman problem. SIAM J. Comp. 28(6), 1998–2029 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Curticapean, R., Künnemann, M.: A quantization framework for smoothed analysis of euclidean optimization problems. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 349–360. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica 68(1), 190–264 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Etscheid, M.: Performance guarantees for scheduling algorithms under perturbed machine speeds. Discrete Applied Mathematics (to appear)

    Google Scholar 

  10. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, chap. 8. John Wiley & Sons (1997)

    Google Scholar 

  11. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and its Variations, chap. 9. Kluwer Academic Publishers (2002)

    Google Scholar 

  12. Karger, D., Onak, K.: Polynomial approximation schemes for smoothed and random instances of multidimensional packing problems. In: Proc. of the 18th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 1207–1216. SIAM (2007)

    Google Scholar 

  13. Manthey, B., Röglin, H.: Smoothed analysis: Analysis of algorithms beyond worst case. It - Information Technology 53(6), 280–286 (2011)

    Google Scholar 

  14. Manthey, B., Röglin, H.: Worst-case and smoothed analysis of \(k\)-means clustering with Bregman divergences. J. of Comp. Geom. 4(1), 94–132 (2013)

    Google Scholar 

  15. Manthey, B., Veenstra, R.: Smoothed analysis of the 2-Opt heuristic for the TSP: Polynomial bounds for Gaussian noise. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 579–589. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for Geometric TSP, \(k\)-MST, and related problems. SIAM J. Comp. 28(4), 1298–1309 (1999)

    Article  MATH  Google Scholar 

  17. Papadimitriou, C.H.: The Euclidean traveling salesman problem is NP-complete. Theoretical Computer Science 4(3), 237–244 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comp. 6(3), 563–581 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Spielman, D.A., Teng, S.H.: Smoothed analysis: An attempt to explain the behavior of algorithms in practice. Communications of the ACM 52(10), 76–84 (2009)

    Article  Google Scholar 

  21. Yukich, J.E.: Probability Theory of Classical Euclidean Optimization Problems. Lecture Notes in Mathematics, vol. 1675. Springer (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Künnemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Künnemann, M., Manthey, B. (2015). Towards Understanding the Smoothed Approximation Ratio of the 2-Opt Heuristic. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_70

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics