Abstract
The 2-Opt heuristic is a very simple, easy-to-implement local search heuristic for the traveling salesman problem. While it usually provides good approximations to the optimal tour in experiments, its worst-case performance is poor.
In an attempt to explain the approximation performance of 2-Opt, we analyze the smoothed approximation ratio of 2-Opt. We obtain a bound of \(O(\log (1/\sigma ))\) for the smoothed approximation ratio of 2-Opt. As a lower bound, we prove that the worst-case lower bound of \(\Omega (\frac{\log n}{\log \log n})\) for the approximation ratio holds for \(\sigma = O(1/\sqrt{n})\).
Our main technical novelty is that, different from existing smoothed analyses, we do not separately analyze objective values of the global and the local optimum on all inputs, but simultaneously bound them on the same input.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)
Arthur, D., Manthey, B., Röglin, H.: Smoothed analysis of the \(k\)-means method. Journal of the ACM 58(5) (2011)
Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an application to the \(k\)-means method. SIAM J. Comp. 39(2), 766–782 (2009)
Bläser, M., Manthey, B., Rao, B.V.R.: Smoothed analysis of partitioning algorithms for Euclidean functionals. Algorithmica 66(2), 397–418 (2013)
Brunsch, T., Röglin, H., Rutten, C., Vredeveld, T.: Smoothed performance guarantees for local search. Mathematical Programming 146(1–2), 185–218 (2014)
Chandra, B., Karloff, H., Tovey, C.: New results on the old \(k\)-opt algorithm for the traveling salesman problem. SIAM J. Comp. 28(6), 1998–2029 (1999)
Curticapean, R., Künnemann, M.: A quantization framework for smoothed analysis of euclidean optimization problems. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 349–360. Springer, Heidelberg (2013)
Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica 68(1), 190–264 (2014)
Etscheid, M.: Performance guarantees for scheduling algorithms under perturbed machine speeds. Discrete Applied Mathematics (to appear)
Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, chap. 8. John Wiley & Sons (1997)
Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and its Variations, chap. 9. Kluwer Academic Publishers (2002)
Karger, D., Onak, K.: Polynomial approximation schemes for smoothed and random instances of multidimensional packing problems. In: Proc. of the 18th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 1207–1216. SIAM (2007)
Manthey, B., Röglin, H.: Smoothed analysis: Analysis of algorithms beyond worst case. It - Information Technology 53(6), 280–286 (2011)
Manthey, B., Röglin, H.: Worst-case and smoothed analysis of \(k\)-means clustering with Bregman divergences. J. of Comp. Geom. 4(1), 94–132 (2013)
Manthey, B., Veenstra, R.: Smoothed analysis of the 2-Opt heuristic for the TSP: Polynomial bounds for Gaussian noise. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 579–589. Springer, Heidelberg (2013)
Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for Geometric TSP, \(k\)-MST, and related problems. SIAM J. Comp. 28(4), 1298–1309 (1999)
Papadimitriou, C.H.: The Euclidean traveling salesman problem is NP-complete. Theoretical Computer Science 4(3), 237–244 (1977)
Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comp. 6(3), 563–581 (1977)
Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463 (2004)
Spielman, D.A., Teng, S.H.: Smoothed analysis: An attempt to explain the behavior of algorithms in practice. Communications of the ACM 52(10), 76–84 (2009)
Yukich, J.E.: Probability Theory of Classical Euclidean Optimization Problems. Lecture Notes in Mathematics, vol. 1675. Springer (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Künnemann, M., Manthey, B. (2015). Towards Understanding the Smoothed Approximation Ratio of the 2-Opt Heuristic. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_70
Download citation
DOI: https://doi.org/10.1007/978-3-662-47672-7_70
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47671-0
Online ISBN: 978-3-662-47672-7
eBook Packages: Computer ScienceComputer Science (R0)