Nothing Special   »   [go: up one dir, main page]

Skip to main content

Near-Linear Query Complexity for Graph Inference

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

  • 2709 Accesses

Abstract

How efficiently can we find an unknown graph using distance or shortest path queries between its vertices? Let \(G = (V,E)\) be a connected, undirected, and unweighted graph of bounded degree. The edge set E is initially unknown, and the graph can be accessed using a distance oracle, which receives a pair of vertices (uv) and returns the distance between u and v. In the verification problem, we are given a hypothetical graph \(\hat{G} = (V,\hat{E})\) and want to check whether G is equal to \(\hat{G}\). We analyze a natural greedy algorithm and prove that it uses \(n^{1+o(1)}\) distance queries. In the more difficult reconstruction problem, \(\hat{G}\) is not given, and the goal is to find the graph G. If the graph can be accessed using a shortest path oracle, which returns not just the distance but an actual shortest path between u and v, we show that extending the idea of greedy gives a reconstruction algorithm that uses \(n^{1+o(1)}\) shortest path queries. When the graph has bounded treewidth, we further bound the query complexity of the greedy algorithms for both problems by \(\tilde{O}(n)\). When the graph is chordal, we provide a randomized algorithm for reconstruction using \(\tilde{O}(n)\) distance queries.

The full version of the paper is available on the authors’ websites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of traceroute sampling: or, power-law degree distributions in regular graphs. Journal of the ACM (JACM) 56(4), 21 (2009)

    Article  MathSciNet  Google Scholar 

  2. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihaľák, M., Shankar Ram, L.: Network discovery and verification. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 127–138. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Castro, R., Coates, M., Liang, G., Nowak, R., Yu, B.: Network tomography: recent developments. Statistical Science 19, 499–517 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chung, F., Garrett, M., Graham, R., Shallcross, D.: Distance realization problems with applications to internet tomography. Journal of Computer and System Sciences 63, 432–448 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vázquez, A., Vespignani, A.: Exploring networks with traceroute-like probes: Theory and simulations. Theoretical Computer Science 355(1), 6–24 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Erlebach, T., Hall, A., Hoffmann, M., Mihaľák, M.: Network discovery and verification with distance queries. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 69–80. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Hein, J.J.: An optimal algorithm to reconstruct trees from additive distance data. Bulletin of Mathematical Biology 51(5), 597–603 (1989)

    Article  MATH  Google Scholar 

  8. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of computer and system sciences 9(3), 256–278 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary tree reconstruction. In: SODA, pp. 444–453. SIAM (2003)

    Google Scholar 

  10. Mathieu, C., Zhou, H.: Graph reconstruction via distance oracles. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 733–744. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Reyzin, L., Srivastava, N.: On the longest path algorithm for reconstructing trees from distance matrices. Information processing letters 101(3), 98–100 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tarissan, F., Latapy, M., Prieur, C.: Efficient measurement of complex networks using link queries. In: INFOCOM Workshops, pp. 254–259. IEEE (2009)

    Google Scholar 

  13. Thorup, M., Zwick, U.: Compact routing schemes. In: Symposium on Parallel Algorithms and Architectures, pp. 1–10. ACM (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kannan, S., Mathieu, C., Zhou, H. (2015). Near-Linear Query Complexity for Graph Inference. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_63

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics