Nothing Special   »   [go: up one dir, main page]

Skip to main content

Proofs of Proximity for Context-Free Languages and Read-Once Branching Programs

(Extended Abstract)

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

Proofs of proximity are probabilistic proof systems in which the verifier only queries a sub-linear number of input bits, and soundness only means that, with high probability, the input is close to an accepting input. In their minimal form, called Merlin-Arthur proofs of proximity (\({\mathcal {MAP}}\)), the verifier receives, in addition to query access to the input, also free access to an explicitly given short (sub-linear) proof. A more general notion is that of an interactive proof of proximity (\({\mathcal {IPP}}\)), in which the verifier is allowed to interact with an all-powerful, yet untrusted, prover. \({\mathcal {MAP}}\)s and \({\mathcal {IPP}}\)s may be thought of as the \({\mathcal {NP}}\) and \({\mathcal {IP}}\) analogues of property testing, respectively.

In this work we construct proofs of proximity for two natural classes of properties: (1) context-free languages, and (2) languages accepted by small read-once branching programs. Our main results are:

  1. 1.

    \({\mathcal {MAP}}\)s for these two classes, in which, for inputs of length \(n\), both the verifier’s query complexity and the length of the \({\mathcal {MAP}}\) proof are \(\widetilde{O}(\sqrt{n})\).

  2. 2.

    \({\mathcal {IPP}}\)s for the same two classes with constant query complexity, poly-logarithmic communication complexity, and logarithmically many rounds of interaction.

Full version can be found in ECCC TR15-024 [GGR15].

This research was partially supported by the Israel Science Foundation (grant No. 671/13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable with a constant number of queries. SIAM J. Comput. 30(6), 1842–1862 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bollig, B.: Property testing and the branching program size of boolean functions. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 258–269. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4), 889–974 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)

    Google Scholar 

  5. Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the PCP theorem. SIAM J. Comput. 36(4), 975–1024 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ergün, F., Kumar, R., Rubinfeld, R.: Fast approximate probabilistically checkable proofs. Inf. Comput. 189(2), 135–159 (2004)

    Article  MATH  Google Scholar 

  7. Fischer, E., Goldhirsh, Y., Lachish, O.: Partial tests, universal tests and decomposability. In: Innovations in Theoretical Computer Science, ITCS 2014, Princeton, NJ, USA, January 12–14, pp. 483–500 (2014)

    Google Scholar 

  8. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM (JACM) 45(4), 653–750 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldreich, O., Gur, T., Rothblum, R.D.: Proofs of proximity for context-free languages and read-once branching programs. Electronic Colloquium on Computational Complexity (ECCC) 22, 24 (2015)

    Google Scholar 

  10. Goldreich, O., Ron, D.: On proximity-oblivious testing. SIAM Journal on Computing 40(2), 534–566 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gur, T., Rothblum, R.D.: Non-interactive proofs of proximity. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, pp. 133–142. ACM (2015)

    Google Scholar 

  12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co. Inc., Boston (2006)

    Google Scholar 

  13. Tauman Kalai, Y., Rothblum, R.D.: Arguments of proximity (2014) (manuscript)

    Google Scholar 

  14. Kriegel, K., Waack, S.: Lower bounds on the complexity of real-time branching programs. ITA 22(4), 447–459 (1988)

    MATH  MathSciNet  Google Scholar 

  15. Lewis, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of context-free and context-sensitive languages. In: SWCT (FOCS), pp. 191–202 (1965)

    Google Scholar 

  16. Newman, I.: Testing membership in languages that have small width branching programs. SIAM Journal on Computing 31(5), 1557–1570 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Parnas, M., Ron, D., Rubinfeld, R.: Testing parenthesis languages. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM-APPROX 2001. LNCS, vol. 2129, pp. 261–272. Springer, Heidelberg (2001)

    Google Scholar 

  18. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ruzzo, W.L.: On uniform circuit complexity. J. Comput. Syst. Sci. 22(3), 365–383 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rothblum, G.N., Vadhan, S., Wigderson, A.: Interactive proofs of proximity: Delegating computation in sublinear time. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Gur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldreich, O., Gur, T., Rothblum, R.D. (2015). Proofs of Proximity for Context-Free Languages and Read-Once Branching Programs. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_54

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics