Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lower Bounds for the Graph Homomorphism Problem

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

The graph homomorphism problem (HOM) asks whether the vertices of a given n-vertex graph G can be mapped to the vertices of a given h-vertex graph H such that each edge of G is mapped to an edge of H. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 2-CSP problem. In this paper, we prove several lower bounds for HOM under the Exponential Time Hypothesis (ETH) assumption. The main result is a lower bound \(2^{\Omega \left( \frac{n \log h}{\log \log h}\right) }\). This rules out the existence of a single-exponential algorithm and shows that the trivial upper bound \(2^{\mathcal {O}(n\log {h})}\) is almost asymptotically tight.

We also investigate what properties of graphs G and H make it difficult to solve HOM(GH). An easy observation is that an \(\mathcal {O}(h^n)\) upper bound can be improved to \(\mathcal {O}(h^{{\text {vc}}(G)})\) where \({\text {vc}}(G)\) is the minimum size of a vertex cover of G. The second lower bound \(h^{\Omega ({\text {vc}}(G))}\) shows that the upper bound is asymptotically tight. As to the properties of the “right-hand side” graph H, it is known that HOM(GH) can be solved in time \((f(\Delta (H)))^n\) and \((f({\text {tw}}(H)))^n\) where \(\Delta (H)\) is the maximum degree of H and \({\text {tw}}(H)\) is the treewidth of H. This gives single-exponential algorithms for graphs of bounded maximum degree or bounded treewidth. Since the chromatic number \(\chi (H)\) does not exceed \({\text {tw}}(H)\) and \(\Delta (H)+1\), it is natural to ask whether similar upper bounds with respect to \(\chi (H)\) can be obtained. We provide a negative answer by establishing a lower bound \((f(\chi (H)))^n\) for every function f. We also observe that similar lower bounds can be obtained for locally injective homomorphisms.

The full version of the paper is available at http://arxiv.org/abs/1502.05447

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Austrin, P.: Towards sharp inapproximability for any 2-CSP. SIAM J. Comput. 39(6), 2430–2463 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barto, L., Kozik, M., Niven, T.: Graphs, polymorphisms and the complexity of homomorphism problems. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 789–796 (2008)

    Google Scholar 

  3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Computing 39(2), 546–563 (2009)

    Article  MATH  Google Scholar 

  4. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized complexity. J. Computer and System Sciences 72(8), 1346–1367 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical Computer Science 411(40–42), 3736–3756 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)

    Google Scholar 

  7. Diaz, J., Serna, M., Thilikos, D.M.: Counting \(H\)-colorings of partial \(k\)-trees. Theoretical Computer Science 281, 291–309 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fiala, J., Golovach, P.A., Kratochvíl, J.: Computational complexity of the distance constrained labeling problem for trees (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 294–305. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms - structure, complexity, and applications. Computer Science Review 2(2), 97–111 (2008)

    Article  MATH  Google Scholar 

  11. Fomin, F.V., Heggernes, P., Kratsch, D.: Exact algorithms for graph homomorphisms. Theory of Computing Systems 41(2), 381–393 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)

    Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  14. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5(4), 586–595 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1) (2007)

    Google Scholar 

  16. Havet, F., Klazar, M., Kratochvíl, J., Kratsch, D., Liedloff, M.: Exact algorithms for L(2, 1)-labeling of graphs. Algorithmica 59(2), 169–194 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hell, P., Nešetřil, J.: On the complexity of \(H\)-coloring. J. Combinatorial Theory Ser. B 48(1), 92–110 (1990)

    Article  MATH  Google Scholar 

  18. Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford Lecture Series in Mathematics and its Applications, vol. 28. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  19. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity. J. Computer and System Sciences 63(4), 512–530 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Junosza-Szaniawski, K., Kratochvíl, J., Liedloff, M., Rossmanith, P., Rzazewski, P.: Fast exact algorithm for l(2, 1)-labeling of graphs. Theor. Comput. Sci. 505, 42–54 (2013)

    Article  MATH  Google Scholar 

  21. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf. Process. Lett. 5(3), 66–67 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lokshtanov, D.: Private communication (2014)

    Google Scholar 

  23. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 760–776. SIAM (2011)

    Google Scholar 

  24. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bulletin of EATCS 3(105) (2013)

    Google Scholar 

  25. Lovász, L.: Large networks and graph limits, vol. 60. American Mathematical Soc. (2012)

    Google Scholar 

  26. Marx, D.: Can you beat treewidth? Theory of Computing 6(1), 85–112 (2010)

    Article  MathSciNet  Google Scholar 

  27. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 245–254 (2008)

    Google Scholar 

  28. Rzażewski, P.: Exact algorithm for graph homomorphism and locally injective graph homomorphism. Inf. Process. Lett. 114(7), 387–391 (2014)

    Article  MATH  Google Scholar 

  29. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2005)

    Google Scholar 

  30. Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Wahlström, M.: Problem 5.21. time complexity of graph homomorphism. In: Thore Husfeldt, Dieter Kratsch, R.P., Sorkin, G. (eds.) Exact Complexity of NP-Hard Problems. Dagstuhl Seminar 10441 Final Report. Dagstuhl (2010)

    Google Scholar 

  32. Wahlström, M.: New plain-exponential time classes for graph homomorphism. Theory of Computing Systems 49(2), 273–282 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Golovnev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Golovnev, A., Kulikov, A.S., Mihajlin, I. (2015). Lower Bounds for the Graph Homomorphism Problem. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics