Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parsimonious Types and Non-uniform Computation

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9135))

Included in the following conference series:

Abstract

We consider a non-uniform affine lambda-calculus, called parsimonious, and endow its terms with two type disciplines: simply-typed and with linear polymorphism. We show that the terms of string type into Boolean type characterize the class L/poly in the first case, and P/poly in the second. Moreover, we relate this characterization to that given by the second author in terms of Boolean proof nets, highlighting continuous affine approximations as the bridge between the two approaches to non-uniform computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163(2), 409–470 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda calculus. Inf. Comput. 207(1), 41–62 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ehrhard, T., Regnier, L.: Differential interaction nets. Electr. Notes Theor. Comput. Sci. 123, 35–74 (2005)

    Article  MathSciNet  Google Scholar 

  5. Ehrhard, T., Regnier, L.: Uniformity and the taylor expansion of ordinary lambda-terms. Theor. Comput. Sci. 403(2–3), 347–372 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gaboardi, M., Péchoux, R.: Upper bounds on stream I/O using semantic interpretations. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 271–286. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Ghica, D.R.: Geometry of synthesis: a structured approach to VLSI design. In: Proceedings of POPL, pp. 363–375 (2007)

    Google Scholar 

  8. Girard, J.Y.: Geometry of interaction I: Interpretation of system F. Proccedings of Logic Colloquium 1988, 221–260 (1989)

    MathSciNet  Google Scholar 

  9. Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kfoury, A.J.: A linearization of the lambda-calculus and consequences. J. Log. Comput. 10(3), 411–436 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. Fundam. Inform. 19(1/2) (1993)

    Google Scholar 

  12. Mazza, D.: An infinitary affine lambda-calculus isomorphic to the full lambda-calculus. In: Proceedings of LICS, pp. 471–480 (2012)

    Google Scholar 

  13. Mazza, D.: Non-uniform polytime computation in the infinitary affine lambda-calculus. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 305–317. Springer, Heidelberg (2014)

    Google Scholar 

  14. Mazza, D.: Simple parsimonious types and logarithmic space (2015), available on the author’s web page

    Google Scholar 

  15. Melliès, P.A.: Asynchronous games 2: The true concurrency of innocence. Theor. Comput. Sci. 358(2–3), 200–228 (2006)

    Article  MATH  Google Scholar 

  16. Melliès, P.-A., Tabareau, N., Tasson, C.: An explicit formula for the free exponential modality of linear logic. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 247–260. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Ramyaa, R., Leivant, D.: Ramified corecurrence and logspace. Electr. Notes Theor. Comput. Sci. 276, 247–261 (2011)

    Article  MathSciNet  Google Scholar 

  18. Saurin, A.: Typing streams in the \(\Lambda \mu \)-calculus. ACM Trans. Comput. Log. 11(4) (2010)

    Google Scholar 

  19. Terui, K.: Proof nets and boolean circuits. In: Proceedings of LICS, pp. 182–191 (2004)

    Google Scholar 

  20. Vollmer, H.: Introduction to circuit complexity - a uniform approach. Texts in theoretical computer science. Springer (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiano Mazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mazza, D., Terui, K. (2015). Parsimonious Types and Non-uniform Computation. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47666-6_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47665-9

  • Online ISBN: 978-3-662-47666-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics