Abstract
We consider a non-uniform affine lambda-calculus, called parsimonious, and endow its terms with two type disciplines: simply-typed and with linear polymorphism. We show that the terms of string type into Boolean type characterize the class L/poly in the first case, and P/poly in the second. Moreover, we relate this characterization to that given by the second author in terms of Boolean proof nets, highlighting continuous affine approximations as the bridge between the two approaches to non-uniform computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163(2), 409–470 (2000)
Baillot, P., Terui, K.: Light types for polynomial time computation in lambda calculus. Inf. Comput. 207(1), 41–62 (2009)
Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)
Ehrhard, T., Regnier, L.: Differential interaction nets. Electr. Notes Theor. Comput. Sci. 123, 35–74 (2005)
Ehrhard, T., Regnier, L.: Uniformity and the taylor expansion of ordinary lambda-terms. Theor. Comput. Sci. 403(2–3), 347–372 (2008)
Gaboardi, M., Péchoux, R.: Upper bounds on stream I/O using semantic interpretations. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 271–286. Springer, Heidelberg (2009)
Ghica, D.R.: Geometry of synthesis: a structured approach to VLSI design. In: Proceedings of POPL, pp. 363–375 (2007)
Girard, J.Y.: Geometry of interaction I: Interpretation of system F. Proccedings of Logic Colloquium 1988, 221–260 (1989)
Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
Kfoury, A.J.: A linearization of the lambda-calculus and consequences. J. Log. Comput. 10(3), 411–436 (2000)
Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. Fundam. Inform. 19(1/2) (1993)
Mazza, D.: An infinitary affine lambda-calculus isomorphic to the full lambda-calculus. In: Proceedings of LICS, pp. 471–480 (2012)
Mazza, D.: Non-uniform polytime computation in the infinitary affine lambda-calculus. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 305–317. Springer, Heidelberg (2014)
Mazza, D.: Simple parsimonious types and logarithmic space (2015), available on the author’s web page
Melliès, P.A.: Asynchronous games 2: The true concurrency of innocence. Theor. Comput. Sci. 358(2–3), 200–228 (2006)
Melliès, P.-A., Tabareau, N., Tasson, C.: An explicit formula for the free exponential modality of linear logic. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 247–260. Springer, Heidelberg (2009)
Ramyaa, R., Leivant, D.: Ramified corecurrence and logspace. Electr. Notes Theor. Comput. Sci. 276, 247–261 (2011)
Saurin, A.: Typing streams in the \(\Lambda \mu \)-calculus. ACM Trans. Comput. Log. 11(4) (2010)
Terui, K.: Proof nets and boolean circuits. In: Proceedings of LICS, pp. 182–191 (2004)
Vollmer, H.: Introduction to circuit complexity - a uniform approach. Texts in theoretical computer science. Springer (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mazza, D., Terui, K. (2015). Parsimonious Types and Non-uniform Computation. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-662-47666-6_28
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47665-9
Online ISBN: 978-3-662-47666-6
eBook Packages: Computer ScienceComputer Science (R0)