Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cross-Lingual Sentiment Classification Based on Denoising Autoencoder

  • Conference paper
Natural Language Processing and Chinese Computing (NLPCC 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 496))

Abstract

Sentiment classification system relies on high-quality emotional resources. However, these resources are imbalanced in different languages. The way of how to leverage rich labeled data of one language (source language) for the sentiment classification of resource-poor language (target language), namely cross-lingual sentiment classification (CLSC), becomes a focus topic. This paper utilizes rich English resources for Chinese sentiment classification. To eliminate the language gap between English and Chinese, this paper proposes a combination CLSC approach based on denoising autoencoder. First, two classifiers based on denoising autoencoder are learned respectively in English and Chinese views by using English corpus and English-to-Chinese corpus. Second, we classify Chinese test data and Chinese-to-English test data with the two classifiers trained in the two views. Last, the final sentiment classification results are obtained by the combination of the two results in two views. Experiments are carried out on NLP&CC 2013 CLSC dataset including book, DVD and music categories. The results show that our approach achieves the accuracy of 80.02%, which outperforms the current state-of-the-art systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Turney, P.D.: Thumbs up or thumbs down? Semantic Orientation Applied to Unsupervised Classification of Reviews. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistic, pp. 417–424. Association for Computational Linguistics (2002)

    Google Scholar 

  2. Wei, B., Pal, C.: Cross lingual adaptation: an experiment on sentiment classifications. In: Proceedings of the ACL 2010 Conference Short Papers, pp. 258–262. Association for Computational Linguistics (2010)

    Google Scholar 

  3. Zhao, Y.Y., Qin, B., Liu, T.: Sentiment Analysis (in Chinese). Journal of Software 21(8), 1834–1848 (2010)

    Article  Google Scholar 

  4. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification using Machine Learning Techniques. In: Proceedings of the ACL-2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)

    Google Scholar 

  5. Kennedy, A., Inkpen, D.: Sentiment classification of movie reviews using contextual valence shifters. Computational Intelligence 22(2), 110–125 (2006)

    Article  MathSciNet  Google Scholar 

  6. Li, S., Xia, R., Zong, C.Q., Huang, C.R.: A framework of feature selection methods for text categorization. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th IJFNLP of the AFNLP, pp. 692–700. ACL and AFNLP (2009)

    Google Scholar 

  7. Wan, X.J.: Co-training for cross-lingual sentiment classification. In: Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, vol. 1, pp. 235–243. Association for Computational Linguistics (2009)

    Google Scholar 

  8. Gui, L., Xu, R., Xu, J., Yuan, L., Yao, Y., Zhou, J., Qiu, Q., Wang, S., Wong, K.-F., Cheung, R.: A Mixed Model for Cross Lingual Opinion Analysis. In: Zhou, G., Li, J., Zhao, D., Feng, Y. (eds.) NLPCC 2013. CCIS, vol. 400, pp. 93–104. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Li, S., Wang, R., Liu, H., Huang, C.-R.: Active Learning for Cross-Lingual Sentiment Classification. In: Zhou, G., Li, J., Zhao, D., Feng, Y. (eds.) NLPCC 2013. CCIS, vol. 400, pp. 236–246. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Chen, Q., He, Y.X., Liu, X.L., Sun, S.T., Peng, M., Li, F.: Cross-Language Sentiment Analysis Based on Parser. Acta Scientiarum Naturalium Universitatis Pekinensis 50(1), 55–60 (2014) (in Chinese)

    Google Scholar 

  11. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learning 2, 1–127 (2009)

    Article  Google Scholar 

  12. Bengio, Y., Delalleau, O.: On the expressive power of deep architectures. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925, pp. 18–36. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. Large-Scale Kernel Machines 34, 1–41 (2007)

    Google Scholar 

  14. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  15. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems 19, 153 (2007)

    Google Scholar 

  16. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM, New York (2008)

    Chapter  Google Scholar 

  17. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  18. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language Processing 20(1), 30–42 (2012)

    Article  Google Scholar 

  19. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. The Journal of Machine Learning Research 12, 2493–2537 (2011)

    MATH  Google Scholar 

  20. Tang, D., Qin, B., Liu, T., Li, Z.: Learning Sentence Representation for Emotion Classification on Microblogs. In: Zhou, G., Li, J., Zhao, D., Feng, Y. (eds.) NLPCC 2013. CCIS, vol. 400, pp. 212–223. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Zhou, S.S., Chen, Q.C., Wang, X.L.: Active deep networks for semi-supervised sentiment classification. In: COLING 2010 Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1515–1523. Association for Computational Linguistics (2010)

    Google Scholar 

  22. Galavotti, L., Sebastiani, F., Simi, M.: Feature selection and negative evidence in automated text categorization. In: Proceedings of KDD (2000)

    Google Scholar 

  23. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information processing & management 24(5), 513–523 (1988)

    Article  Google Scholar 

  24. Bergstra, J., Breuleux, O., Bastien, F., et al.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference, SciPy (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, H., Chen, L., Huang, D. (2014). Cross-Lingual Sentiment Classification Based on Denoising Autoencoder. In: Zong, C., Nie, JY., Zhao, D., Feng, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2014. Communications in Computer and Information Science, vol 496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45924-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45924-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45923-2

  • Online ISBN: 978-3-662-45924-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics