Abstract
Accurate eye localization plays a key role in many face analysis related applications. In this paper, we propose a novel eye localization framework with a group of trained filter arrays called multi-channel correlation filter bank (MCCFB). Each filter array in the bank suits to a different face condition, thus combining these filter array can locate eyes more precisely for variable poses, appearances and illuminations when comparing to single filter/filter array. To demonstrate the performance of our strategy, MCCFB is compared to other eye localization methods, experimental results show superiority of our method in detection ratio, localization accuracy and robustness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhou, Z.H., Geng, X.: Projection functions for eye detection. Pattern Recognition 37(5), 1049–1056 (2004)
Tan, X., Song, F., Zhou, Z., Chen, S.: Enhanced pictorial structures for preciseeye localization under uncontrolled conditions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1621–1628 (2009)
Cao, X., Wei, Y., Wen, F., Sun, J.: Face Alignment by Explicit Shape Regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2887–2894 (2012)
Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60, 135–164 (2004)
Castrillón-Santana, M., Lorenzo-Navarro, J., Déniz-Suárez, O., Isern-González, J., Falcón-Martel, A.: Multiple face detection at different resolutions for perceptual user interfaces. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 445–452. Springer, Heidelberg (2005)
Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)
Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476–3483 (2013)
Bolme, D.S., Draper, B.A., Beveridge, J.R.: Average of synthetic exact filters. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2105–2112 (2009)
Bolme, D.S., Beveridge, J.R., Draper, B.A.: Visual object tracking using adaptive correlation filtersc. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)
Heflin, B., Scheirerc, W., Boult, T.E.: For your eyes only. In: IEEE Workshop on the Applications of Computer Vision, pp. 193–200 (2012)
Boddeti, V.N., Kanade, T., Kumar, B.V.: Correlation Filters for Object Alignment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2291–2298 (2013)
Galoogahi, H.K., Sim, T., Lucey, S.: Multi-channel Correlation Filters. In: IEEE International Conference on Computer Vision, pp. 3072–3079 (2013)
Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust Face Detection Using the Hausdorff Distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)
FGNET Annotation of BioID Dataset, http://www-prima.inrialpes.fr/FGnet/data/11-BioID/bioid_points.html (accessed May 21, 2014)
Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report, University of Massachusetts, Amherst (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, R., Ge, S., Xie, K., Chen, S. (2014). Eye Localization Based on Multi-Channel Correlation Filter Bank. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45646-0_33
Download citation
DOI: https://doi.org/10.1007/978-3-662-45646-0_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45645-3
Online ISBN: 978-3-662-45646-0
eBook Packages: Computer ScienceComputer Science (R0)