Nothing Special   »   [go: up one dir, main page]

Skip to main content

GPU-Based Point Cloud Recognition Using Evolutionary Algorithms

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8602))

Included in the following conference series:

Abstract

In this paper, we describe a method for recognizing objects in the form of point clouds acquired with a laser scanner. This method is fully implemented on GPU and uses bio-inspired metaheuristics, namely PSO or DE, to evolve the rigid transformation that best aligns some references extracted from a dataset to the target point cloud. We compare the performance of our method with an established method based on Fast Point Feature Histograms (FPFH). The results prove that FPFH is more reliable under simple and controlled situations, but PSO and DE are more robust with respect to common problems as noise or occlusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Das, S., Suganthan, P.: Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)

    Article  Google Scholar 

  2. de Veronese, L., Krohling, R.: Swarm’s flight: Accelerating the particles using C-CUDA. In: Proc. IEEE Congress on Evolutionary Computation, pp. 3264–3270 (2009)

    Google Scholar 

  3. de Veronese, L., Krohling, R.: Differential Evolution algorithm on the GPU with C-CUDA. In: Proc. IEEE Congress on Evolutionary Computation, pp. 1–7 (2010)

    Google Scholar 

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proc. IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  6. Kromer, P., Platos, J., Snasel, V.: A brief survey of advances in Particle Swarm Optimization on Graphic Processing Units. In: IEEE World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 182–188 (2013)

    Google Scholar 

  7. Kromer, P., Platos, J., Snasel, V.: A brief survey of Differential Evolution on Graphic Processing Units. In: Symp. on Differential Evolution, pp. 157–164 (2013)

    Google Scholar 

  8. Li, H., Shen, T., Huang, X.: Approximately global optimization for robust alignment of generalized shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(6), 1116–1131 (2011)

    Article  Google Scholar 

  9. Makadia, A., Patterson, A., Daniilidis, K.: Fully automatic registration of 3D point clouds. In: Conf. on Computer Vision and Pattern Recognition, pp. 1297–1304 (2006)

    Google Scholar 

  10. Nashed, Y.S.G., Ugolotti, R., Mesejo, P., Cagnoni, S.: libCudaOptimize: an open source library of GPU-based metaheuristics. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO) Companion, pp. 117–124. ACM (2012)

    Google Scholar 

  11. nVIDIA Corporation: nVIDIA CUDA Programming Guide v. 5.0. (2012)

    Google Scholar 

  12. Oleari, F., Lodi Rizzini, D., Caselli, S.: A low-cost stereo system for 3D object recognition. In: IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 127–132 (2013)

    Google Scholar 

  13. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics Forum 26, 80–113 (2007)

    Article  Google Scholar 

  14. Poli, R., Kennedy, J., Blackwell, T.: Particle Swarm Optimization. Swarm Intelligence 1(1), 33–57 (2007)

    Article  Google Scholar 

  15. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3212–3217 (2009)

    Google Scholar 

  16. Rusu, R.B., Marton, Z.C., Blodow, N., Beetz, M.: Learning informative point classes for the acquisition of object model maps. In: IEEE International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 643–650 (2008)

    Google Scholar 

  17. Storn, R., Price, K.: Differential Evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute (1995)

    Google Scholar 

  18. Ugolotti, R., Nashed, Y.S., Mesejo, P., Ivekovič, Š., Mussi, L., Cagnoni, S.: Particle Swarm Optimization and Differential Evolution for model-based object detection. Applied Soft Computing 13(6), 3092–3105 (2013)

    Article  Google Scholar 

  19. Urfalolu, O., Mikulastik, P.A., Stegmann, I.: Scale Invariant Robust Registration of 3D-Point Data and a Triangle Mesh by Global Optimization. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 1059–1070. Springer, Heidelberg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ugolotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ugolotti, R., Micconi, G., Aleotti, J., Cagnoni, S. (2014). GPU-Based Point Cloud Recognition Using Evolutionary Algorithms. In: Esparcia-Alcázar, A., Mora, A. (eds) Applications of Evolutionary Computation. EvoApplications 2014. Lecture Notes in Computer Science(), vol 8602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45523-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45523-4_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45522-7

  • Online ISBN: 978-3-662-45523-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics