Nothing Special   »   [go: up one dir, main page]

Skip to main content

A 3D DNA Self-assembly Model and Algorithm for Minimum Spanning Tree Problem

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

  • 1403 Accesses

Abstract

The minimum spanning tree (MST) problem has been widely studied for its wide applicationsin recent years. Because of its outstanding advantages, DNA self-assembly computing has been used to solve MST problem. A new paradigm, called a three dimensional (3D) DNA self-assembly model, is proposed for this type of problem in this paper. The results show that it is efficient in solving MST problem and the algorithm has a high-efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Păun, G.: Membrane computing: an introduction, Springer-verlan (2002)

    Google Scholar 

  2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  3. Song, T., Pan, L., Wang, J., Ibrahim, V., Subramanian, K.G., Rosni, A.: Normal Forms of Spiking Neural P Systems with Anti-Spikes. IEEE Trans. on Nanobioscience 11(4), 352–359 (2012)

    Article  Google Scholar 

  4. Song, T., Zheng, H., He, J.: Solving Vertex Cover Problem by Tissue P Systems with Cell Division. Appl. Math. Inf. Sci. 8(1), 333–337 (2014)

    Article  Google Scholar 

  5. Martın-Vide, C., Păun, G., Pazos, J., Rodrıguez-Patón, A.: Tissue P Systems, Theore. Comput. Sci. 296(2), 295–326 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Wang, H.: Proving theorems by pattern recognition. Bell Systs. Tech. J. 40, 1–41 (1961)

    Article  Google Scholar 

  7. Winfree, E.: Algorithmic self-assembly of DNA. California Institute of Technology, California (1998)

    Google Scholar 

  8. Zhang, X., Niu, Y., Cui, G., Xu, J.: Application of DNA Self-Assembly on Graph Coloring Problem. J. Comput. Theor. Nanosci. 6, 1–8 (2009)

    Article  Google Scholar 

  9. Zhang, X., Niu, Y., Cui, G., Xu, J.: Application of DNA Self-Assembly on 0-1 Integer Programming Problem. J. Comput. Theor. Nanosci. 7, 1–8 (2010)

    Article  Google Scholar 

  10. Wang, Y., Hu, P., Cui, G.: DNA Self-Assembly for Graph Vertex 3-Coloring Problem. J. Comput. Theor. Nanosci. 7, 29–38 (2010)

    Google Scholar 

  11. Wang, Y., Bai, X., Wei, D., Cui, G.: DNA Self-Assembly for Maximum Weighted Independent Set Problem. Advanced Science Letters 5, 1–6 (2012)

    Article  Google Scholar 

  12. Song, T., Pan, L., Păun, G.: Asynchronous Spiking Neural P Systems with Local Synchronization. Information Sciences 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crocker, J.: Golden Handshake. Nature 451, 528–529 (2008)

    Article  Google Scholar 

  14. Song, T., Wang, X., Zhang, Z., Hong, L.: Detecting Motifs in DNA Sequences by Branching from Neighbors of Qualified Potential Motifs. J. Comput. Theor. Nanosci. 10, 2201–2206 (2013)

    Article  Google Scholar 

  15. Jonoska, N., Karl, S., Saito, M.: Three Dimensional DNA Structures in Computing. BioSystems 52, 143–153 (1999)

    Article  Google Scholar 

  16. Zhang, X., Song, W., Fan, R., Cui, G.: Three Dimensional DNA Self-Assembly Model for the Minimum Vertex Cover Problem. In: Procecedings of the 4th International Symposium on Computational Intelligence and Design (2011)

    Google Scholar 

  17. Lin, M.Q., Xu, J.: 3D DNA Self-Assembly Model for Graph Vertex Coloring. J. Comput. Theor. Nanosci. 7, 1246–1253 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Bian, L., Wang, Y., Cui, G. (2014). A 3D DNA Self-assembly Model and Algorithm for Minimum Spanning Tree Problem. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics