Nothing Special   »   [go: up one dir, main page]

Skip to main content

Application to Logic Circuits Using Combinatorial Displacement of DNA Strands

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

  • 1402 Accesses

Abstract

The toehold and branch migration domain of traditional DNA strand displacement are covalently connected, such a structure cannot be changed during the execution of the circuit, so to some extent it limits the construction of DNA circuits. To solve this problem, we use combinatorial displacement of DNA strands technology where toehold and branch migration domains are located in different strand, these two domains must be firstly linked by hybridization of linking domains that can occur strand displacement reaction, this paper is to design an Inhibit and a XOR based on this principle which is theoretically possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yurke, B., Turberfield, A.J., Mills, A.P., et al.: A DNA-fuelled Molecular Machine Made of DNA. J. Nature 406(6796), 605–608 (2000)

    Article  Google Scholar 

  2. Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular Multi-level Circuits from Immobilized DNA-based Logic Gates. J. Journal of the American Chemical Society 129(48), 14875–14879 (2007)

    Article  Google Scholar 

  3. Li, W., Yan, H., Liu, Y., et al.: Three-Input Majority Logic Gate and Multiple Input Logic Circuit Based on DNA Strand Displacement. J. Nano Letters 13(6), 2980–2988 (2013)

    Article  Google Scholar 

  4. Zhang, D., Turberfield, A.J., Yurke, B., et al.: Engineering Entropy-driven Reactions and Networks Catalyzed by DNA. J. Science 318(5853), 1121–1125 (2007)

    Article  Google Scholar 

  5. Sherman, W.B., Seeman, N.C.: A Precisely Controlled DNA Biped Walking Device. J. Nano Letters 4(7), 1203–1207 (2004)

    Article  Google Scholar 

  6. Shin, J.S., Pierce, N.A.: A Synthetic DNA Walker for Molecular Transport. J. Journal of the American Chemical Society 126(35), 10834–10835 (2004)

    Article  Google Scholar 

  7. Gu, H., Chao, J., Xiao, S.J., et al.: A Proximity-Based Programmable DNA Nanoscale Assembly Line. J. Nature 465(7295), 202–205 (2010)

    Article  Google Scholar 

  8. Yan, H., Zhang, X.P., Shen, Z.Y., et al.: A Robust DNA Mechanical Device Controlled by Hybridization Topology. J. Nature 415(6867), 62–65 (2002)

    Article  Google Scholar 

  9. Ding, B.Q., Seeman, N.C.: Operation of a DNA Robot Arm Inserted Into A 2D DNA Crystalline Substrate. J. Science 314(5805), 1583–1585 (2006)

    Article  Google Scholar 

  10. Qian, L.L., Winfree, E.: Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades. J. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  11. Zhu, J.B., Zhang, L.B., Wang, E.K., et al.: Four-way junction-driven DNA strand displacement and its application in building majority logic circuit. J. Journal of the American Chemical Society Nano 7(11), 10211–10217 (2013)

    MathSciNet  Google Scholar 

  12. Duckett, D.R., Lilley, D.M.: The Three-Way DNA Junction is A Y-Shaped Molecule in which There is No Helix-Helix Stacking. J. The EMBO Journal 9(5), 1659 (1990)

    Google Scholar 

  13. Genot, A.J., Bath, J., Turberfield, A.J.: Combinatorial Displacement of DNA Strands: application to matrix multiplication and weighted sums. J. Angewandte Chemie International Edition 52(4), 1189–1192 (2013)

    Article  Google Scholar 

  14. Chen, X.: Expanding the Rule Set of DNA Circuitry with Associative Toehold Activation. J. Journal of the American Chemical Society. 134(1), 263–271 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Zhang, W., Wang, Y., Cui, G. (2014). Application to Logic Circuits Using Combinatorial Displacement of DNA Strands. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics