Nothing Special   »   [go: up one dir, main page]

Skip to main content

New Fuzzy Probability Spaces and Fuzzy Random Variables Based on Gradual Numbers

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

  • 1409 Accesses

Abstract

In this paper, we deal with special generalization of probability measures and random variables by considering their values in the set of gradual numbers. Firstly, the concept of gradual probability measures is introduced and some of its properties are discussed. And then, the concept of gradual random variables is introduced and weak law of large numbers for gradual random variables on a gradual probability space is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiche, F., Dubois, D.: Possibility and Gradual Number Approaches To Ranking Methods For Random Fuzzy Intervals. Communications in Computer and Information Science 299, 9–18 (2012)

    Article  Google Scholar 

  2. Ban, J.: Radon Nikodym Theorem and Conditional Expectation for Fuzzy Valued measures and variables. Fuzzy Sets and Systems 34, 383–392 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boukezzoula, R., Galichet, S.: Optimistic Arithmetic Operators for Fuzzy and Gradual Intervals - Part II: Fuzzy and Gradual Interval Approach. Communications in Computer and Information Science 81, 451–460 (2010)

    Article  Google Scholar 

  4. Deiri, E., Sadeghpour, B.G., Yari, G.H.: Dominated Convergence for Fuzzy Random Variables. Int. J. Industrial Mathematics 2, 89–96 (2010)

    Google Scholar 

  5. Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy Interval Analysis. Fundamentals of Fuzzy Sets, pp. 483–581. Kluwer (2000)

    Google Scholar 

  6. Dubois, D., Fortin, J., Zielińnski, P.: Interval PERT and its Fuzzy Extension. Studies in Fuzziness and Soft Computing 252, 171–199 (2010)

    Article  Google Scholar 

  7. Fortin, J., Dubois, D., Fargier, H.: Gradual Numbers and Their Application to Fuzzy Interval Analysis. IEEE Transactions on Fuzzy Systems 16, 388–402 (2008)

    Article  Google Scholar 

  8. Fortin, J., Kasperski, A., Zielinski, P.: Some Methods for Evaluating the Optimality of Elements in Matroids. Fuzzy Sets and Systems 160, 1341–1354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gil, M.Á., LÓpez-Díaz, M.: Overview on the Development of Fuzzy Random Variables. Fuzzy Sets and Systems 157, 2546–2557 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hutton, B.: Normality in Fuzzy Topological Spaces. J. Math. Anal. Appl. 50, 74–79 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kasperski, A., Zieliński, P.: Using gradual numbers for solving fuzzy-valued combinatorial optimization problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 656–665. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Kruse, R., Meyer, K.D.: Statistics with Vague Data. Reidel Publ. Co., Dordrecht (1987)

    Google Scholar 

  13. Kwakernaak, H.: Fuzzy Random Variables. Part I: Definitions and Theorems. Inform. Sci. 15, 1–29 (1978)

    MathSciNet  MATH  Google Scholar 

  14. Kwakernaak, H.: Fuzzy Random Variables. Part II: Algorithms and Examples for the Discrete Case. Inform. Sci. 17, 253–278 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Lietard, L., Rocacher, D.: Conditions with Aggregates Evaluated Using Gradual Numbers. Control and Cybernetics 38, 395–417 (2009)

    MathSciNet  Google Scholar 

  16. Lodwick, W.A., Untiedt, E.: A Comparison of Interval Analysis Using Constraint Interval Arithmetic and Fuzzy Interval Analysis Using Gradual Numbers. In: Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2008, pp. 1–6 (2008)

    Google Scholar 

  17. Puri, M.L., Ralescu, D.A.: Convergence Theorem for Fuzzy Martingale. J. Math. Anal. Appl. 160, 107–122 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sadeqi, I., Azart, F.Y.: Gradual Normed Linear Space. Iranian Journal of Fuzzy Systems 8, 131–139 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Stock, E.A.: Gradual Numbers and Fuzzy Optimization. Ph.D. Thesis, University of Colorado Denver, Denver. America (2010)

    Google Scholar 

  20. Stojaković, M.: Fuzzy Valued Measure. Fuzzy Sets and Systems 65, 95–104 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stojaković, M.: Decomposition and Representation of Fuzzy Valued Measure. Fuzzy Sets and Systems 112, 251–256 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stojaković, M.: Imprecise Set and Fuzzy Valued Probability. Journal of Computational and Applied Mathematics 235, 4524–4531 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Untiedt, E., Lodwick, W.: Using Gradual Numbers to Analyze Non-Monotonic Functions of Fuzzy Intervals. In: Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2008, pp. 1–6 (2008)

    Google Scholar 

  24. Shi, X., Lu, W., Wang, Z.: Programmable DNA Tile Self-assembly Using a Hierarchical Sub-tile Strategy. Nanotechnology 25(7), 075602 (2014)

    Google Scholar 

  25. Wu, H.C.: The Laws of Large Numbers for Fuzzy Random Variables. Fuzzy Sets and Systems 116, 245–262 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xue, X., Ha, M.: On the Extension of the Fuzzy Number Measures in Banach Spaces: Part I. Representation of the Fuzzy Number Measures. Fuzzy Sets and Systems. 78, 347–354 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Zhou, C., Zhou, Y., Bao, J.: New Fuzzy Metric Spaces Based on Gradual Numbers. In: 2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1–5. IEEE Press, New York (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, C., Wang, P. (2014). New Fuzzy Probability Spaces and Fuzzy Random Variables Based on Gradual Numbers. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_104

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_104

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics