Abstract
A fundamental question in algorithmic mechanism design is whether any approximation algorithm for a single-parameter social-welfare maximization problem can be turned into a dominant-strategy truthful mechanism for the same problem (while preserving the approximation ratio up to a constant factor). A particularly desirable type of transformations—called black-box transformations—achieve the above goal by only accessing the approximation algorithm as a black box.
A recent work by Chawla, Immorlica and Lucier (STOC 2012) demonstrates (unconditionally) the impossibility of certain restricted classes of black-box transformations—where the tranformation is oblivious to the feasibility constrain of the optimization problem. In this work, we remove these restrictions under standard complexity-theoretic assumptions: Assuming the existence of one-way functions, we show the impossibility of all black-box transformations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)
Bei, X., Huang, Z.: Bayesian incentive compatibility via fractional assignments. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 720–733. SIAM (2011)
Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer, Heidelberg (2013)
Chawla, S., Immorlica, N., Lucier, B.: On the limits of black-box reductions in mechanism design. In: Proceedings of the 44th Symposium on Theory of Computing, pp. 435–448. ACM (2012)
Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010)
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013)
Goldreich, O.: Foundations of Cryptography — Basic Tools. Cambridge University Press (2001)
Håstad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28, 12–24 (1999)
Hartline, J.D., Kleinberg, R., Malekian, A.: Bayesian incentive compatibility via matchings. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 734–747. SIAM (2011)
Hartline, J.D., Lucier, B.: Bayesian algorithmic mechanism design. CoRR, abs/0909.4756 (2009)
Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007)
Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, Heidelberg (1990)
Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2), 151–158 (1991)
Nisan, N., Ronen, A.: Computationally feasible vcg mechanisms. In: ACM Conference on Electronic Commerce, pp. 242–252 (2000)
Wee, H.: On obfuscating point functions. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 523–532. ACM (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pass, R., Seth, K. (2014). On the Impossibility of Black-Box Transformations in Mechanism Design. In: Lavi, R. (eds) Algorithmic Game Theory. SAGT 2014. Lecture Notes in Computer Science, vol 8768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44803-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-662-44803-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44802-1
Online ISBN: 978-3-662-44803-8
eBook Packages: Computer ScienceComputer Science (R0)