Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Impossibility of Black-Box Transformations in Mechanism Design

  • Conference paper
Algorithmic Game Theory (SAGT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8768))

Included in the following conference series:

Abstract

A fundamental question in algorithmic mechanism design is whether any approximation algorithm for a single-parameter social-welfare maximization problem can be turned into a dominant-strategy truthful mechanism for the same problem (while preserving the approximation ratio up to a constant factor). A particularly desirable type of transformations—called black-box transformations—achieve the above goal by only accessing the approximation algorithm as a black box.

A recent work by Chawla, Immorlica and Lucier (STOC 2012) demonstrates (unconditionally) the impossibility of certain restricted classes of black-box transformations—where the tranformation is oblivious to the feasibility constrain of the optimization problem. In this work, we remove these restrictions under standard complexity-theoretic assumptions: Assuming the existence of one-way functions, we show the impossibility of all black-box transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bei, X., Huang, Z.: Bayesian incentive compatibility via fractional assignments. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 720–733. SIAM (2011)

    Google Scholar 

  3. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Chawla, S., Immorlica, N., Lucier, B.: On the limits of black-box reductions in mechanism design. In: Proceedings of the 44th Symposium on Theory of Computing, pp. 435–448. ACM (2012)

    Google Scholar 

  5. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013)

    Google Scholar 

  7. Goldreich, O.: Foundations of Cryptography — Basic Tools. Cambridge University Press (2001)

    Google Scholar 

  8. Håstad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28, 12–24 (1999)

    Article  Google Scholar 

  9. Hartline, J.D., Kleinberg, R., Malekian, A.: Bayesian incentive compatibility via matchings. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 734–747. SIAM (2011)

    Google Scholar 

  10. Hartline, J.D., Lucier, B.: Bayesian algorithmic mechanism design. CoRR, abs/0909.4756 (2009)

    Google Scholar 

  11. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  13. Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2), 151–158 (1991)

    Article  MATH  Google Scholar 

  14. Nisan, N., Ronen, A.: Computationally feasible vcg mechanisms. In: ACM Conference on Electronic Commerce, pp. 242–252 (2000)

    Google Scholar 

  15. Wee, H.: On obfuscating point functions. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 523–532. ACM (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pass, R., Seth, K. (2014). On the Impossibility of Black-Box Transformations in Mechanism Design. In: Lavi, R. (eds) Algorithmic Game Theory. SAGT 2014. Lecture Notes in Computer Science, vol 8768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44803-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44803-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44802-1

  • Online ISBN: 978-3-662-44803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics