Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weighted Ancestors in Suffix Trees

  • Conference paper
Algorithms - ESA 2014 (ESA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Included in the following conference series:

Abstract

The classical, ubiquitous, predecessor problem is to construct a data structure for a set of integers that supports fast predecessor queries. Its generalisation to weighted trees, a.k.a. the weighted ancestor problem, has been extensively explored and successfully reduced to the predecessor problem. It is known that any data structure solution for the weighted ancestor problem that occupies O(n polylog(n)) space must have Ω(loglogn) query time, if the weights are drawn from a polynomially bounded universe. Perhaps the most important and frequent application of the weighted ancestors problem is for suffix trees. It has been a long-standing open question whether the weighted ancestors problem has better bounds for suffix trees. We answer this question positively: we show that a suffix tree built for a text w[1..n] can be preprocessed using O(n) extra space, so that queries can be answered in O(1) time. Thus we improve the running times of several applications. Our improvement is based on a number of data structure tools and a periodicity-based insight into the combinatorial structure of a suffix tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pattern matching. ACM Transactions on Algorithms 3(2) (2007)

    Google Scholar 

  2. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor. Comput. Sci. 321(1), 5–12 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst. Sci. 48(2), 214–230 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bille, P., Gørtz, I.L., Vildhøj, H.W., Vind, S.: String indexing for patterns with wildcards. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 283–294. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with errors and don’t cares. In: STOC, pp. 91–100 (2004)

    Google Scholar 

  6. Farach, M., Muthukrishnan, S.: Perfect hashing for strings: Formalization and algorithms. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 130–140. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Gawrychowski, P.: Pattern Matching in Lempel-Ziv Compressed Strings: Fast, Simple, and Deterministic. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 421–432. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Gawrychowski, P., Lewenstein, M., Nicholson, P.K.: Weighted ancestors in suffix trees. CoRR abs/1406.7716 (2014)

    Google Scholar 

  9. Kopelowitz, T., Kucherov, G., Nekrich, Y., Starikovskaya, T.A.: Cross-document pattern matching. J. Discrete Algorithms 24, 40–47 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kopelowitz, T., Lewenstein, M.: Dynamic weighted ancestors. In: SODA, pp. 565–574 (2007)

    Google Scholar 

  11. Lewenstein, M., Nekrich, Y., Vitter, J.S.: Space-efficient string indexing for wildcard pattern matching. In: STACS, pp. 506–517 (2014)

    Google Scholar 

  12. Pătraşcu, M.: Predecessor search. In: Encyclopedia of Algorithms (2008)

    Google Scholar 

  13. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ(n). Inf. Process. Lett. 17(2), 81–84 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gawrychowski, P., Lewenstein, M., Nicholson, P.K. (2014). Weighted Ancestors in Suffix Trees. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics