Nothing Special   »   [go: up one dir, main page]

Skip to main content

Best-Fit in Linear Time for Non-generative Population Simulation

(Extended Abstract)

  • Conference paper
Algorithms in Bioinformatics (WABI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8701))

Included in the following conference series:

Abstract

Constructing populations with pre-specified characteristics is a fundamental problem in population genetics and other applied areas. We present a novel non-generative approach that deconstructs the desired population into essential local constraints and then builds the output bottom-up. This is achieved using primarily best-fit techniques from discrete methods, which ensures accuracy of the output. Also, the algorithms are fast, i.e., linear, or even sublinear, in the size of the output. The non-generative approach also results in high sensitivity in the algotihms. Since the accuracy and sensitivity of the population simulation is critical to the quality of the output of the applications that use them, we believe that these algorithms will provide a strong foundation to the methods in these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balloux, F.: EASYPOP (Version 1.7): A Computer Program for Population Genetics Simulations. Journal of Heredity 92, 3 (2001)

    Article  Google Scholar 

  2. Peng, B., Amos, C.I.: Forward-time simulations of non-random mating populations using simuPOP. Bioinformatics 24, 11 (2008)

    Article  Google Scholar 

  3. Montana, G.: HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. Bioinformatics 21, 23 (2005)

    Article  Google Scholar 

  4. Yuan, X., Zhang, J., Wang, Y.: Simulating Linkage Disequilibrium Structures in a Human Population for SNP Association Studies. Biochemical Genetics 49, 5–6 (2011)

    Article  Google Scholar 

  5. Shang, J., Zhang, J., Lei, X., Zhao, W., Dong, Y.: EpiSIM: simulation of multiple epistasis, linkage disequilibrium patterns and haplotype blocks for genome-wide interaction analysis. Genes & Genomes 35, 3 (2013)

    Google Scholar 

  6. Peng, B., Chen, H.-S., Mechanic, L.E., Racine, B., Clarke, J., Clarke, L., Gillanders, E., Feuer, E.J.: Genetic Simulation Resources: a website for the registration and discovery of genetic data simulators. Bioinformatics 29, 8 (2013)

    Article  Google Scholar 

  7. Balding, D., Bishop, M., Cannings, C.: Handbook of Statistical Genetics, 3rd edn. Wiley J. and Sons Ltd. (2007)

    Google Scholar 

  8. Vinod, K.: Kosambi and the genetic mapping function. Resonance 16(6), 540–550 (2011)

    Article  Google Scholar 

  9. Kearsey, M.J., Pooni, H.S.: The genetical analysis of quantitative traits. Chapman & Hall (1996)

    Google Scholar 

  10. Lynch, M., Walsh, B.: Genetics and Analysis of Quantitative Traits. Sinauer Associates (1998)

    Google Scholar 

  11. The International HapMap Consortium: The International HapMap Project. Nature 426, pp. 789–796 (2003)

    Google Scholar 

  12. Haldane, J.B.S.: The combination of linkage values, and the calculation of distance between linked factors. Journal of Genetics 8, 299–309 (1919)

    Article  Google Scholar 

  13. Kosambi, D.D.: The estimation of map distance from recombination values. Journal of Genetics 12(3), 172–175 (1944)

    Google Scholar 

  14. Cheema, J., Dicks, J.: Computational approaches and software tools for genetic linkage map estimation in plants. Briefings in Bioinformatics 10(6), 595–608 (2009)

    Article  Google Scholar 

  15. Zhang, K., Deng, M., Chen, T., Waterman, M.S., Sun, F.: A dynamic programming algorithm for haplotype block partitioning. Proceedings of the National Academy of Sciences 19(11), 7335–7339 (2002)

    Article  Google Scholar 

  16. Podlich, D.W., Cooper, M.: QU-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics 14(7), 632–653 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haiminen, N., Lebreton, C., Parida, L. (2014). Best-Fit in Linear Time for Non-generative Population Simulation. In: Brown, D., Morgenstern, B. (eds) Algorithms in Bioinformatics. WABI 2014. Lecture Notes in Computer Science(), vol 8701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44753-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44753-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44752-9

  • Online ISBN: 978-3-662-44753-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics