Nothing Special   »   [go: up one dir, main page]

Skip to main content

Trees from Functions as Processes

  • Conference paper
CONCUR 2014 – Concurrency Theory (CONCUR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8704))

Included in the following conference series:

Abstract

Lévy-Longo Trees and Böhm Trees are the best known tree structures on the λ-calculus. We give general conditions under which an encoding of the λ-calculus into the π-calculus is sound and complete with respect to such trees. We apply these conditions to various encodings of the call-by-name λ-calculus, showing how the two kinds of tree can be obtained by varying the behavioural equivalence adopted in the π-calculus and/or the encoding. The conditions are presented in the π-calculus but can be adapted to other concurrency formalisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Informatica 29, 737–760 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barendregt, H.P.: The Lambda Calculus: Syntax, semantics. North-Holland (1984)

    Google Scholar 

  3. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-calculus. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 29–45. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Berger, M., Honda, K., Yoshida, N.: Genericity and the pi-calculus. Acta Informatica 42(2-3), 83–141 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with linear types. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 280–296. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Dezani-Ciancaglini, M., Giovannetti, E.: From Bohm’s theorem to observational equivalences: an informal account. ENTCS 50(2), 83–116 (2001)

    Google Scholar 

  7. Hirschkoff, D., Madiot, J.M., Sangiorgi, D.: Duality and i/o-types in the π-calculus. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 302–316. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Milner, R.: Functions as processes. Mathematical Structures in Computer Science 2(2), 119–141 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Milner, R.: Communicating and Mobile Systems: The π-Calculus. CUP (1999)

    Google Scholar 

  10. Plotkin, G.D.: T ω as a universal domain. Journal of Computer and System Sciences 17, 209–236 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sangiorgi, D.: Lazy functions and mobile processes. In: Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 691–720. MIT Press (2000)

    Google Scholar 

  12. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. CUP (2001)

    Google Scholar 

  13. Scott, D.: Data types as lattices. SIAM Journal on Computing 5(3), 522–587 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yoshida, N., Honda, K., Berger, M.: Linearity and bisimulation. Journal of Logic and Algebraic Programming 72(2), 207–238 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sangiorgi, D., Xu, X. (2014). Trees from Functions as Processes. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44584-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44583-9

  • Online ISBN: 978-3-662-44584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics