Abstract
Semantic mapping of indoor environments refers to the task of building representations of these environments that associate spatial concepts with spatial entities. In particular, semantic labels, like ‘rooms’ and ‘corridors’ are associated to portions of an underlying metric map, to allow robots or humans to exploit this additional knowledge. Usually, the classifiers that build semantic maps process data coming from laser range scanners and cameras and do not consider the specific type of the mapped building. However, in architecture it is well known that each building has a specific typology. The concept of building typology denotes the set of buildings that have the same function (e.g., being a school building) and that share the same structural features. In this paper, we exploit the concept of building typology to build semantic maps of indoor environments. The proposed system uses only data from laser range scanners and creates a specific classifier for each building typology, showing good classification accuracy.
Chapter PDF
Similar content being viewed by others
References
Buschka, P., Saffiotti, A.: A virtual sensor for room detection. In: Proc. IROS, pp. 637–642 (2002)
Pronobis, A., Mozos, O., Caputo, B., Jensfelt, P.: Multi-modal semantic place classification. Int. J. Robot. Res. 29(2-3), 298–320 (2010)
Rossi, A.: The architecture of the city. MIT Press (1984)
Pronobis, A.: Semantic mapping with mobile robots. PhD thesis. KTH (2011)
Althaus, P., Christensen, H.: Behavior coordination in structured environments. Adv. Robotics 17(7), 657–674 (2003)
Mozos, O., Stachniss, C., Burgard, W.: Supervised learning of places from range data using AdaBoost. In: Proc. ICRA, pp. 1730–1735 (2005)
Mozos, O., Triebel, R., Jensfelt, P., Rottmann, A., Burgard, W.: Supervised semantic labeling of places using information extracted from sensor data. Robot. Auton. Syst. 55(5), 391–402 (2007)
Topp, E., Christensen, H.: Topological modelling for human augmented mapping. In: Proc. IROS, pp. 2257–2263 (2006)
Friedman, S., Pasula, H., Fox, D.: Voronoi random fields: Extracting the topological structure of indoor environments via place labeling. In: Proc. IJCAI, pp. 2109–2114 (2007)
Wolf, D., Sukhatme, G.: Semantic mapping using mobile robots. IEEE T. Robot. 24(2), 245–258 (2008)
Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: Proc. CVPR, pp. 413–420 (2009)
Zender, H., Mozos, O., Jensfelt, P., Kruijff, G., Burgard, W.: Conceptual spatial representations for indoor mobile robots. Robot. Auton. Syst. 56(6), 493–502 (2008)
Lynch, K.: The image of the city. MIT Press (1960)
Neufert, E., Neufert, P.: Architects’ data. Wiley-Blackwell (2012)
Bishop, C.: Pattern recognition and machine learning. Springer (2006)
Perkins, B.: Building type basics for elementary and secondary schools. Wiley (2001)
Nguyen, V., Gächter, S., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2d range data for indoor mobile robotics. Auton. Robot. 23(2), 97–111 (2007)
Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2d range scans. J. Intell. Robot. Syst. 18(3), 249–275 (1997)
Anguelov, D., Koller, D., Parker, E., Thrun, S.: Detecting and modeling doors with mobile robots. In: Proc. ICRA (2004)
Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: A robot simulator for research and education. In: Proc. ICRA, pp. 1400–1405 (2007)
OpenCV: OpenCV (2012), http://opencv.org/
RapidMiner: RapidMiner (2012), http://www.rapidminer.com/
Howard, A., Roy, N.: The robotics data set repository (Radish) (2003), http://radish.sourceforge.net/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Luperto, M., Quattrini Li, A., Amigoni, F. (2014). A System for Building Semantic Maps of Indoor Environments Exploiting the Concept of Building Typology. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds) RoboCup 2013: Robot World Cup XVII. RoboCup 2013. Lecture Notes in Computer Science(), vol 8371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44468-9_44
Download citation
DOI: https://doi.org/10.1007/978-3-662-44468-9_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44467-2
Online ISBN: 978-3-662-44468-9
eBook Packages: Computer ScienceComputer Science (R0)