Abstract
We propose a method to convert schemes designed over symmetric bilinear groups into schemes over asymmetric bilinear groups. The conversion assigns variables to one or both of the two source groups in asymmetric bilinear groups so that all original computations in the symmetric bilinear groups go through over asymmetric groups without having to compute isomorphisms between the source groups. Our approach is to represent dependencies among variables using a directed graph, and split it into two graphs so that variables associated to the nodes in each graph are assigned to one of the source groups. Though searching for the best split is cumbersome by hand, our graph-based approach allows us to automate the task with a simple program. With the help of the automated search, our conversion method is applied to several existing schemes including one that has been considered hard to convert.
Chapter PDF
Similar content being viewed by others
References
Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: Tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)
Akinyele, J.A., Green, M., Hohenberger, S.: Using SMT solvers to automate design tasks for encryption and signature schemes. In: ACM CCS 2013, pp. 399–410 (2013)
Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic. IACR ePrint Archive, 2013/400 (2013)
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993)
Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)
Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM CCS 2004, pp. 168–177 (2004)
Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-based aggregate signature schemes. DCC 2010 55(2-3), 141–167 (2010)
Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric pairings - the role of psi revisited. IACR ePrint Archive, 2009/480 (2009)
Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric pairings - the role of revisited. Discrete Applied Math. 159(13), 1311–1322 (2011)
Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 122–140. Springer, Heidelberg (2013)
De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)
Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in f21971. IACR ePrint Archive, 2013/074 (2013)
Joux, A.: Faster index calculus for the medium prime case application to 1175-bit and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013)
Joux, A.: A new index calculus algorithm with complexity l(1/4+o(1)) in very small characteristic. IACR ePrint Archive, 2013/095 (2013)
Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005)
Menezes, A.: Asymmetric pairings. Invited Talk in ECC 2009 (2009), http://math.ucalgary.ca/sites/ecc.math.ucalgary.ca/files/u5/Menezes_ECC2009.pdf
Ramanna, S.C., Chatterjee, S., Sarkar, P.: Variants of waters’ dual-system primitives using asymmetric pairings. IACR ePrint Archive, 2012/024 (2012)
Ramanna, S.C., Chatterjee, S., Sarkar, P.: Variants of waters’ dual system primitives using asymmetric pairings. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 298–315. Springer, Heidelberg (2012)
Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)
Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)
Smart, N.P., Vercauteren, F.: On computable isomorphisms in efficient asymmetric pairing-based systems. Discrete Applied Mathematics 155(4), 538–547 (2007)
Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)
Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 International Association for Cryptologic Research
About this paper
Cite this paper
Abe, M., Groth, J., Ohkubo, M., Tango, T. (2014). Converting Cryptographic Schemes from Symmetric to Asymmetric Bilinear Groups. In: Garay, J.A., Gennaro, R. (eds) Advances in Cryptology – CRYPTO 2014. CRYPTO 2014. Lecture Notes in Computer Science, vol 8616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44371-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-662-44371-2_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44370-5
Online ISBN: 978-3-662-44371-2
eBook Packages: Computer ScienceComputer Science (R0)