Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Best Things Don’t Always Come in Small Packages: Constant Creation in Grammatical Evolution

  • Conference paper
Genetic Programming (EuroGP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8599))

Included in the following conference series:

Abstract

This paper evaluates the performance of various methods to constant creation in Grammatical Evolution (GE), and validates the results against those from Genetic Programming (GP). Constant creation in GE is an important issue due to the disruptive nature of ripple crossover, which can radically remap multiple terminals in an individual, and we investigate if more compact methods, which are more similar to the GP style of constant creation (Ephemeral Random Constants (ERCs), perform better.

The results are surprising. The GE methods all perform significantly better than GP on unseen test data, and we demonstrate that the standard GE approach of digit concatenation does not produce individuals that are any larger than those from methods which are designed to use less genetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mitchell, T.M.: Machine learning. McGraw Hill, New York (1996)

    MATH  Google Scholar 

  2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient search of numeric leaf values. In: Spector, et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), July 7-11, pp. 155–162. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  5. McKay, B., Willis, M., Searson, D., Montague, G.: Non-linear continuum regression using genetic programming. In: Banzhaf, et al. (eds.) Proceedings of GECCO 1999, Orlando, Florida, USA, July 13-17, vol. 2, pp. 1106–1111. Morgan Kaufmann (1999)

    Google Scholar 

  6. Ryan, C., Keijzer, M.: An analysis of diversity of constants of genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 404–413. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Evett, M., Fernandez, T.: Numeric mutation improves the discovery of numeric constants in genetic programming. In: Koza, et al. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, July 22-25, pp. 66–71. Morgan Kaufmann (1998)

    Google Scholar 

  8. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary Language. Genetic programming, vol. 4. Kluwer Academic Publishers (2003)

    Google Scholar 

  9. Byrne, J., O’Neill, M., Hemberg, E., Brabazon, A.: Analysis of constant creation techniques on the binomial-3 problem with grammatical evolution. In: Tyrrell, et al. (eds.) 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, May 18-21, pp. 568–573. IEEE Computational Intelligence Society, IEEE Press (2009)

    Google Scholar 

  10. O’Neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolution. Genetic Programming and Evolvable Machines 4(1), 67–93 (2003)

    Article  MATH  Google Scholar 

  11. Dempsey, I., O’Neill, M., Brabazon, A.: Constant creation in grammatical evolution. International Journal of Innovative Comput. and Applic. 1(1), 23–38 (2007)

    Article  Google Scholar 

  12. Augusto, D.A., Barbosa, H.J.C., Barreto, A.M.S., Bernardino, H.S.: Evolving numerical constants in grammatical evolution with the ephemeral constant method. In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 110–124. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Augusto, D.A., Barbosa, H.J.C., Barreto, A.M.S., Bernardino, H.S.: A new approach for generating numerical constants in grammatical evolution. In: Krasnogor, et al. (eds.) GECCO 2011: Proceedings of the 13th Annual Conference Companion on GECCO, Dublin, Ireland, July 12-16, pp. 193–194. ACM (2011)

    Google Scholar 

  14. Daida, J.M., Bertram, R.R., Stanhope, S.A., Khoo, J.C., Chaudhary, S.A., Chaudhri, O.A., Polito II, J.A.: What makes a problem GP-hard? Analysis of a tunably difficult problem in genetic programming. Genetic Programming and Evolvable Machines 2(2), 165–191 (2001)

    Article  MATH  Google Scholar 

  15. Nicolau, M., Slattery, D.: libGE - Grammatical Evolution Library (2006)

    Google Scholar 

  16. Ryan, C., Azad, R.M.A.: Sensible initialisation in grammatical evolution. In: Barry, A.M. (ed.) GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, Chigaco, pp. 142–145. AAAI (July 2003)

    Google Scholar 

  17. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans. on Evolutionary Computation 13(2), 333–349 (2009)

    Article  Google Scholar 

  18. Keijzer, M., Babovic, V.: Genetic programming, ensemble methods and the bias/variance tradeoff - introductory investigations. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 76–90. Springer, Heidelberg (2000)

    Google Scholar 

  19. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Costelloe, D., Ryan, C.: On improving generalisation in genetic programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 61–72. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azad, R.M.A., Ryan, C. (2014). The Best Things Don’t Always Come in Small Packages: Constant Creation in Grammatical Evolution. In: Nicolau, M., et al. Genetic Programming. EuroGP 2014. Lecture Notes in Computer Science, vol 8599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44303-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44303-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44302-6

  • Online ISBN: 978-3-662-44303-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics