Nothing Special   »   [go: up one dir, main page]

Skip to main content

Appearance-based Debiasing of Deep Learning Models in Medical Imaging

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Abstract

Out-of-distribution data can substantially impede the performance of deep learning models. In medical imaging, domain shifts can, for instance, be caused by different image acquisition protocols. To address these domain shifts, domain adversarial training can be employed to constrain a model to domainagnostic features. This, however, requires prior knowledge about the domain variable, which might not always be accessible. Recent approaches make use of control regions to guide the training process and thereby alleviate the need for prior domain knowledge. In this work, we combine these approaches with traditional domain adversarial training to exploit the benefits of both methods.We test the proposed method on two medical datasets and demonstrate performance increases of up to 10 %, compared to a baseline trained without debiasing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aubreville M, Bertram CA, Marzahl C, Gurtner C, Dettwiler M, Schmidt A et al. Deep learning algorithms out-perform veterinary pathologists in detecting the mitotically most active tumor region. Sci Rep. 2020;10(1):16447.

    Google Scholar 

  2. Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F et al. Domainadversarial training of neural networks. J Mach Learn Res. 2016;17(59):1–35.

    Google Scholar 

  3. Wilm F, Marzahl C, Breininger K,Aubreville M. Domain adversarial RetinaNet as a reference algorithm for the mitosis domain generalization challenge. Proc MICCAI. 2022:5–13.

    Google Scholar 

  4. Mühlberg A, Katzmann A, Heinemann V, Kärgel R, Wels M, Taubmann O et al. The technome-a predictive internal calibration approach for quantitative imaging biomarker research. Sci Rep. 2020;10(1):1103.

    Google Scholar 

  5. Langer S, Taubmann O, Denzinger F, Maier A, Mühlberg A. Mitigating unknown bias in deep learning-based assessment of CT images deep technome. Proc BVM. 2023:177–82.

    Google Scholar 

  6. Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–e107.

    Google Scholar 

  7. Remy-Jardin MJ, Kaergel R, Suehling M, Faivre JB, Flohr TG, Remy J. Detection and phenotyping of emphysema using a new machine learning method. Proc RSNA. 2018.

    Google Scholar 

  8. Wilm F, Fragoso M, Bertram CA, Stathonikos N, Öttl M, Qiu J et al. Multi-scanner canine cutaneous squamous cell carcinoma histopathology dataset. Proc BVM. 2023:206–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Reimann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilm, F., Reimann, M., Taubmann, O., Mühlberg, A., Breininger, K. (2024). Appearance-based Debiasing of Deep Learning Models in Medical Imaging. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_9

Download citation

Publish with us

Policies and ethics