Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-task Learning to Improve Semantic Segmentation of CBCT Scans using Image Reconstruction

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 789 Accesses

Abstract

Semantic segmentation is a crucial task in medical image processing, essential for segmenting organs or lesions such as tumors. In this study we aim to improve automated segmentation in CBCTs through multi-task learning. To evaluate effects on different volume qualities, a CBCT dataset is synthesised from the CT Liver Tumor Segmentation Benchmark (LiTS) dataset. To improve segmentation, two approaches are investigated. First, we perform multi-task learning to add morphology based regularization through a volume reconstruction task. Second, we use this reconstruction task to reconstruct the best quality CBCT (most similar to the original CT), facilitating denoising effects. We explore both holistic and patch-based approaches. Our findings reveal that, especially using a patch-based approach, multi-task learning improves segmentation in most cases and that these results can further be improved by our denoising approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S et al. nnU-Net: self-adapting framework for U-net-based medical image segmentation. Proc BVM. 2019:22–2.

    Google Scholar 

  2. Hatamizadeh A,Tang Y,Nath V,Yang D, Myronenko A, LandmanBet al.Unetr: transformers for 3d medical image segmentation. Proc IEEE. 2022:574–84.

    Google Scholar 

  3. Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P. SegFormer: simple and efficient design for semantic segmentation with transformers. Proc IEEE. 2021;34:12077–90.

    Google Scholar 

  4. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Proc IEEE. 2015:234–41.

    Google Scholar 

  5. Bilic P, Christ P, Li HB, Vorontsov E, Ben-Cohen A, Kaissis G et al. The liver tumor segmentation benchmark (lits). Med Image Anal. 2023;84:102680.

    Google Scholar 

  6. Weninger L, Liu Q, Merhof D. Multi-task learning for brain tumor segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th InternationalWorkshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part I 5. 2020:327–37.

    Google Scholar 

  7. Mlynarski P, Delingette H, Criminisi A, Ayache N. Deep learning with mixed supervision for brain tumor segmentation. J Med Imaging. 2019;6(3):34002–2.

    Google Scholar 

  8. Araújo JDL, Cruz LB da, Diniz JOB, Ferreira JL, Silva AC, Paiva AC de et al. Liver segmentation from computed tomography images using cascade deep learning. Comput Biol Med. 2022;140:105095.

    Google Scholar 

  9. Han K, Liu L, Song Y, Liu Y, Qiu C, Tang Y et al. An effective semi-supervised approach for liver CT image segmentation. Proc IEEE. 2022;26(8):3999–4007.

    Google Scholar 

  10. Wang J, Zhang X, Lv P,Wang H, Cheng Y. Automatic liver segmentation using EfficientNet and attention-based residual U-net in CT. J Digit Imaging. 2022:1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian E. Tschuchnig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tschuchnig, M.E., Coste-Marin, J., Steininger, P., Gadermayr, M. (2024). Multi-task Learning to Improve Semantic Segmentation of CBCT Scans using Image Reconstruction. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_68

Download citation

Publish with us

Policies and ethics