Abstract
Semantic segmentation is a crucial task in medical image processing, essential for segmenting organs or lesions such as tumors. In this study we aim to improve automated segmentation in CBCTs through multi-task learning. To evaluate effects on different volume qualities, a CBCT dataset is synthesised from the CT Liver Tumor Segmentation Benchmark (LiTS) dataset. To improve segmentation, two approaches are investigated. First, we perform multi-task learning to add morphology based regularization through a volume reconstruction task. Second, we use this reconstruction task to reconstruct the best quality CBCT (most similar to the original CT), facilitating denoising effects. We explore both holistic and patch-based approaches. Our findings reveal that, especially using a patch-based approach, multi-task learning improves segmentation in most cases and that these results can further be improved by our denoising approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S et al. nnU-Net: self-adapting framework for U-net-based medical image segmentation. Proc BVM. 2019:22–2.
Hatamizadeh A,Tang Y,Nath V,Yang D, Myronenko A, LandmanBet al.Unetr: transformers for 3d medical image segmentation. Proc IEEE. 2022:574–84.
Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P. SegFormer: simple and efficient design for semantic segmentation with transformers. Proc IEEE. 2021;34:12077–90.
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Proc IEEE. 2015:234–41.
Bilic P, Christ P, Li HB, Vorontsov E, Ben-Cohen A, Kaissis G et al. The liver tumor segmentation benchmark (lits). Med Image Anal. 2023;84:102680.
Weninger L, Liu Q, Merhof D. Multi-task learning for brain tumor segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th InternationalWorkshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part I 5. 2020:327–37.
Mlynarski P, Delingette H, Criminisi A, Ayache N. Deep learning with mixed supervision for brain tumor segmentation. J Med Imaging. 2019;6(3):34002–2.
Araújo JDL, Cruz LB da, Diniz JOB, Ferreira JL, Silva AC, Paiva AC de et al. Liver segmentation from computed tomography images using cascade deep learning. Comput Biol Med. 2022;140:105095.
Han K, Liu L, Song Y, Liu Y, Qiu C, Tang Y et al. An effective semi-supervised approach for liver CT image segmentation. Proc IEEE. 2022;26(8):3999–4007.
Wang J, Zhang X, Lv P,Wang H, Cheng Y. Automatic liver segmentation using EfficientNet and attention-based residual U-net in CT. J Digit Imaging. 2022:1–15.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Tschuchnig, M.E., Coste-Marin, J., Steininger, P., Gadermayr, M. (2024). Multi-task Learning to Improve Semantic Segmentation of CBCT Scans using Image Reconstruction. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_68
Download citation
DOI: https://doi.org/10.1007/978-3-658-44037-4_68
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-44036-7
Online ISBN: 978-3-658-44037-4
eBook Packages: Computer Science and Engineering (German Language)